
Looking for a Good Start to Your Career? . 2

Your Chance to Be Part of Something Big. 2

Required Steps to Become an Expert . 3

A Pool of Opportunities . 3

What is the Role of an FVE? . 4

What Does an FVE Do? . 4

Required Practical Skills. 6

Required Knowledge . 6

Nice to Have . 7

. 7

Further Reading and Resources. 8

Table of Contents

(©) Amiq Consulting, 2016

Pre-silicon Digital Functional
Verification Engineer (FVE)

Job Description

What exactly are FVEs? Who needs them and why? Read on and you will learn which industries are crying out for
FVEs, what kind of companies employ FVEs, some alternative names for FVEs and what it takes to become one.

Industries:

As an FVE you will be employed by a company that is part either of the Semiconductor Industry or the Electronics
Industry. These are the industries responsible for the Internet of Things, Cloud Computing, high-performance
computing, telecommunications, drones, remote surgery, Mars exploration, autonomous cars, wearables, etc. If
you are able to work from a bench in the middle of a park, it is because you use a mobile device that contains a high
performance, ba�ery-friendly IC (Integrated Circuit). You get the idea… anything that has an IC also requires
verification.

Companies that employ FVEs:

 ASIC producers (Intel, Apple, Infineon)

 FPGA producers (Xilinx, Altera, Atmel)

 Semiconductor factories (Samsung, Intel, TSMC, GLOBALFOUNDRIES)

 Electronics industry companies (Sony, nVidia, Samsung)

 Telecommunications companies (Ericsson, Nokia, Cisco)

 [Verification] IP suppliers (MoreThan IP, Imagination)

 Electronic Design Automation Companies (Mentor, Cadence, Synopsys, AMIQ EDA)

 Consulting companies that provide verification services (AMIQ Consulting, Verilab)

 Training services companies (Doulos)

Other names for FVE:

If you search for an FVE position, you will also find it under one (or a combination) of these tags:

 Digital/Analog/Mixed Signal Verification Engineer

 ASIC or FPGA Verification Engineer

 Functional [Hardware] Verification Engineer

 Pre-Silicon Verification Engineer

 Hardware Verification Engineer

 RTL Verification Engineer

What exactly are FVEs? Who needs them and why? Read on and you will learn which industries are crying out for
FVEs, what kind of companies employ FVEs, some alternative names for FVEs and what it takes to become one.

Industries:

As an FVE you will be employed by a company that is part either of the Semiconductor Industry or the Electronics
Industry. These are the industries responsible for the Internet of Things, Cloud Computing, high-performance
computing, telecommunications, drones, remote surgery, Mars exploration, autonomous cars, wearables, etc. If
you are able to work from a bench in the middle of a park, it is because you use a mobile device that contains a high
performance, ba�ery-friendly IC (Integrated Circuit). You get the idea… anything that has an IC also requires
verification.

Companies that employ FVEs:

 ASIC producers (Intel, Apple, Infineon)

 FPGA producers (Xilinx, Altera, Atmel)

Semiconductor factories (Samsung, Intel, TSMC, GLOBALFOUNDRIES)

Electronics industry companies (Sony, nVidia, Samsung)

Telecommunications (Ericsson, Nokia, Cisco)

[Verification] IP producers (MoreThan IP, Imagination)

Electronic Design Automation Companies (Mentor, Cadence, Synopsys, AMIQ EDA)

Consulting companies that provide verification services (AMIQ Consulting, Verilab)

Training services companies (Doulos)

Other names for FVE:

If you search for an FVE position you will find it under one of these tags (or a mix):

Digital/Analog/Mixed-signal Verification Engineer

ASIC or FPGA Verification Engineer

Functional [Hardware] Verification Engineer

Pre-silicon Verification Engineer

Hardware Verification Engineer

RTL Verification Engineer

(©) Amiq Consulting, 2016

Looking for a Good Start to Your Career?
This document is aimed at students, fresh graduates and those looking to
embark on a new career path. It contains the following:

 a guide to entering the job market (yes, there is life a�er university :))

 an insight into the company’s expectations in terms of skills and knowledge

 information that will put you in a be�er position to take decisions about your career

This document provides a technical overview of the job requirements for Pre-Silicon Digital Functional
Verification Engineer (FVE) positions.

Your Chance to Be Part of Something Big

TABLE OF CONTENTS

https://en.wikipedia.org/wiki/Semiconductor_industry
https://en.wikipedia.org/wiki/Electronics_industry
https://en.wikipedia.org/wiki/Electronics_industry
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.intel.com/
http://www.apple.com/
http://www.infineon.com/
http://www.xilinx.com/
http://www.altera.com/
http://www.atmel.com/
http://www.samsung.com/
http://www.intel.com/
http://www.tsmc.com/
http://www.globalfoundries.com/
http://www.sony.com/
http://www.nvidia.com/
http://www.samsung.com/
http://www.ericsson.com/
http://www.nokia.com/
http://www.cisco.com/
http://www.morethanip.com/
https://imgtec.com/
http://www.mentor.com/
http://www.cadence.com/
http://www.synopsys.com/
http://www.dvteclipse.com/
http://www.amiq.com/consulting
http://www.verilab.com/
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://www.doulos.com/
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Register-transfer_level

What exactly are FVEs? Who needs them and why? Read on and you will learn which industries are crying out for
FVEs, what kind of companies employ FVEs, some alternative names for FVEs and what it takes to become one.

Industries:

As an FVE you will be employed by a company that is part either of the Semiconductor Industry or the Electronics
Industry. These are the industries responsible for the Internet of Things, Cloud Computing, high-performance
computing, telecommunications, drones, remote surgery, Mars exploration, autonomous cars, wearables, etc. If
you are able to work from a bench in the middle of a park, it is because you use a mobile device that contains a high
performance, ba�ery-friendly IC (Integrated Circuit). You get the idea… anything that has an IC also requires
verification.

Companies that employ FVEs:

 ASIC producers (Intel, Apple, Infineon)

 FPGA producers (Xilinx, Altera, Atmel)

Semiconductor factories (Samsung, Intel, TSMC, GLOBALFOUNDRIES)

Electronics industry companies (Sony, nVidia, Samsung)

Telecommunications (Ericsson, Nokia, Cisco)

[Verification] IP producers (MoreThan IP, Imagination)

Electronic Design Automation Companies (Mentor, Cadence, Synopsys, AMIQ EDA)

Consulting companies that provide verification services (AMIQ Consulting, Verilab)

Training services companies (Doulos)

Other names for FVE:

If you search for an FVE position you will find it under one of these tags (or a mix):

Digital/Analog/Mixed-signal Verification Engineer

ASIC or FPGA Verification Engineer

Functional [Hardware] Verification Engineer

Pre-silicon Verification Engineer

Hardware Verification Engineer

RTL Verification Engineer

Studies:

Degree courses that develop the required mix of knowledge and skills to become an FVE
are: Electronics/Telecommunications, Computer Science, Automatic Control Systems,
Information Technology and Mathematics.

I am a junior employee. Now what?

You should focus on developing your verification skills and increasing your knowledge of different architectures,
devices, communication protocols, tools, etc. As an FVE you will work with an interesting array of architectures
(e.g. multi-core, Network-on-Chip), IPs (ARM, DDR4-LP), devices (communication switches), communication
protocols (Ethernet, RapidIO, USB), tools (simulators, fault injection, formal engines), programming languages,
methodologies and platforms (FPGA, emulation). If you have analog design knowledge and have mixed feelings
about digital verification, you can opt to do mixed signal verification, which provides a nice blend of both fields.
You can also switch back and forth between simulation/emulation-based verification and FPGA/final product
verification in lab.

You will be part of a team and a working environment that will allow you to grow your communication and
leadership skills. Frequent verbal or wri�en communication will improve your English speaking and writing skills.
You will also be able to improve your leadership skills by seizing the opportunity to become a team leader. As part
of a multicultural team you will gain first-hand experience of other cultures, meaning you will also see growth on a
personal level.

And as you gain more experience and knowledge, you will take on higher responsibility roles, such as system level
verification lead or verification department technical lead.

What if I change my mind?

An FVE position offers you the flexibility to change your career path at a later date, given that you will already be
familiar with a mix of so�ware and hardware technologies, your will have used OO-programming and so�ware
design pa�erns on a daily basis, and will have experience of working in a multicultural environment, etc. There are
a number of natural choices available to you if you want to work in the semiconductor and electronics industries,
e.g. digital design engineer, embedded systems so�ware/firmware developer or so�ware developer for an EDA
company. And you will always have the option to switch to mobile/web/desktop application development.

Required Steps to Become an Expert

The majority of companies that hire FVEs have their offices in Europe (mostly Germany, France, Italy, Sweden,
Norway, Denmark, Finland and Holland), UK, USA, Israel and Asia (India, China, Singapore, Taiwan, Japan). You will
be employed either directly by one of these companies, or indirectly through a consulting firm like AMIQ
Consulting.

If you are eager to travel or live abroad, you will easily find a contract that suits your needs, either as an employee
of a consulting firm or as an independent contractor. Most of the time you will negotiate the amount of on-site
time. Outsourcing functional verification is a growing trend among IC producers, meaning you will also find FVE
jobs in locations other than those mentioned here.

Pre-silicon digital functional verification is a niche area within the field of
hardware development. It is smaller in size (in terms of number of companies,
potential jobs and available specialists) than the web/mobile/desktop so�ware
development industry. But there is still a high demand for specialists, especially in
Europe, even when taking this difference in size into account.

A Pool of Opportunities

TABLE OF CONTENTS

(©) Amiq Consulting, 2016

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern

Functional hardware bugs are easy to fix if they are discovered before IC production begins (i.e. during the
pre-silicon phase), in which case the effort involved in fixing them is comparable to that of fixing so�ware bugs.
However, functional hardware bugs that make it to the production stage will be present in all ICs and may impact
all those who use them. In the worst case scenario, these bugs will only be eradicated if the IC maker goes back to
the pre-silicon phase, fixes the bug and restarts production (i.e. a respin). What’s more, any recall costs are to be
added to the respin costs, i.e. when the IC maker has to recall buggy ICs and replace them with new ones. You can
read about two famous examples of hardware bugs and their implications here (at a cost of $1 billion!, there is an
in-depth explanation here) and here ($475 million). And you can find out more about the costs involved in IC
production here and here. Besides cost, there are also safety-related issues that any FVE must be aware of.
Medical and military equipment, aeronautical devices, automotive and space-grade applications, to name just a
few, are not allowed to contain any functional bugs. Why? Because human life is at stake. You can learn more about
the importance of safety-critical system verification on Yoav Hollander’s blog. Last but not least, FVEs are also
responsible for finding specification bugs. Implementing functionality based on a buggy specification will only
lead to a buggy IC.

You will find a detailed account of the importance of functional verification and the latest trends in the field in the
Wilson Research Group and Mentor Graphics study.

The role of an FVE role is to identify functional bugs before the IC production process
begins. Your work will help the chip maker avoid production respins, recalls, brand
damage, etc. FVEs are essential to making ICs be�er and safer.

The cost per bug fix in ICs is much higher than the cost per bug fix in so�ware. And the
same is true of turnaround times. You can fix so�ware bugs in days or minutes and then
send out a patch to your users with almost no impact on the usability of the so�ware.

What is the Role of an FVE?

(Mostly so�ware, with a dash of digital design and a pinch of verification planning.
All topped off with a generous helping of communication.)

The following section contains a detailed description of the various tasks you will undertake.

 Study the specification of the Device Under Test (DUT)

You must understand what functions the verified module is supposed to perform, how it interacts with other
devices in the system, what the weak and strong points of its implementation are, and what its legal or illegal
configurations are. Once you understand the specification and have clarified any issues or questions, you will
move on to the verification planning phase. You can learn more about this process in another post of mine:
How to Read a Specification.

 Write the verification plan document

During this stage you need to write the verification plan document, which defines what features are to be verified
and specifies the checkers and metrics (e.g. functional coverage, code coverage, assertion coverage) required to
prove the features have been verified.

Besides writing the verification plan, you also need to write a verification specification document containing
details of the verification strategy. The verification strategy describes the mix of tools (e.g. simulators,
verification automation tools, version control systems, build systems), methodologies (functional verification

formal verification, directed testing, assertion-based verification) and metrics (functional coverage, code
coverage) you are going to use to achieve the verification goals established in the verification plan. The
verification specification also contains a description of the verification environment architecture (e.g. structure,
configuration, verification component layering), the data flows through the verification environment, and the
reference implementation (e.g. Matlab model, SystemC/C/C++ model, SystemVerilog model).

Verification planning is a process that can be done either in one step (i.e. for simple DUTs) or over a succession of
verification planning sessions.

Implement the Verification Environment

As soon as the verification planning is done you will proceed to implement the verification environment using
hardware verification languages (e.g. SystemVerilog, e-language) and hardware verification methodologies
(UVM, UVM-e). This involves coding new verification components, integrating existing verification components,
reference models, implementing metrics collectors and data/timing checks, integrating the DUT’s RTL source
with the verification environment, creating the required build infrastructure, and implementing scenarios and
tests.

This phase is mostly about programming using object/aspect-oriented languages (e.g. SystemVerilog,
e-Language) and so�ware design pa�erns. I would say that, as a rule, pre-silicon functional verification is 90%
object-/aspect-oriented programming and 10% digital circuit design.

Simulate the design, debug

Once you have finished coding a self-contained portion of the verification environment you will begin running
simulations using an RTL simulator (e.g. Incisive by Cadence, QuestaSim by Mentor, VCS by Synopsys). Any bugs
will emerge either in the design or the verification environment. These will have to be fixed together with the
designer, system architect and so�ware engineers.

Collect metrics and track verification progress

During this phase you will run test suites in order to collect metrics and achieve verification goals. To do this you
will use verification automation tools, such as Cadence's vManager or Mentor's Questa Verification Manager. Any
metrics collected will be analyzed and eventually the verification environment will be enhanced to address them.

Report bugs

Once you identify a bug or an issue, or if you have doubts as to the correctness of the design/specification, you
should open a discussion with one of the DUT’s stakeholders (e.g. the designer, architect, so�ware engineer). You
can do this either informally, over a cup of coffee or by email, or formally, by means of a bug reporting system
(e.g. Bugzilla, YouTrack).

Collaborate with others

Collaboration skills are highly valued, just like in any other high-tech job. You will always be part of a team, be this
a team of two, ten or more people. You will take part in various meetings and bug analysis sessions, write emails,
write documents (e.g. specifications, reports), give presentations, train others, hand over your work to others, and
take over work from others, etc. All of these activities will help improve your communication and language skills.
Multicultural verification teams mostly work in English, but other languages, like German, Hebrew and French, can
be a plus.

What Does an FVE Do?

TABLE OF CONTENTS

(©) Amiq Consulting, 2016

http://venturebeat.com/2011/01/31/intels-billion-dollar-mistake-why-chip-flaws-are-so-hard-to-fix/
http://www.anandtech.com/show/4143/the-source-of-intels-cougar-point-sata-bug
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://www.adapteva.com/andreas-blog/semiconductor-economics-101/
http://www.gsaglobal.org/wp-content/uploads/2013/10/20120501_A_Lean_Fabless_Semiconductor_Business_Model.pdf
https://blog.foretellix.com/
https://blogs.mentor.com/verificationhorizons/blog/2015/01/21/prologue-the-2014-wilson-research-group-functional-verification-study/
http://www.amiq.com/consulting/2015/04/24/how-to-read-a-specification/

(Mostly so�ware, with a dash of digital design and a pinch of verification planning.
All topped off with a generous helping of communication.)

The following section contains a detailed description of the various tasks you will undertake.

Study the specification of the Device Under Test (DUT)

You must understand what functions the verified module is supposed to perform, how it interacts with other
devices in the system, what the weak and strong points of its implementation are, and what its legal or illegal
configurations are. Once you understand the specification and have clarified any issues or questions, you will
move on to the verification planning phase. You can learn more about this process in another post of mine:
How to Read a Specification.

Write the verification plan document

During this stage you need to write the verification plan document, which defines what features are to be verified
and specifies the checkers and metrics (e.g. functional coverage, code coverage, assertion coverage) required to
prove the features have been verified.

Besides writing the verification plan, you also need to write a verification specification document containing
details of the verification strategy. The verification strategy describes the mix of tools (e.g. simulators,
verification automation tools, version control systems, build systems), methodologies (functional verification

formal verification, directed testing, assertion-based verification) and metrics (functional coverage, code
coverage) you are going to use to achieve the verification goals established in the verification plan. The
verification specification also contains a description of the verification environment architecture (e.g. structure,
configuration, verification component layering), the data flows through the verification environment, and the
reference implementation (e.g. Matlab model, SystemC/C/C++ model, SystemVerilog model).

Verification planning is a process that can be done either in one step (i.e. for simple DUTs) or over a succession of
verification planning sessions.

 Implement the Verification Environment

As soon as the verification planning is done you will proceed to implement the verification environment using
hardware verification languages (e.g. SystemVerilog, e-language) and hardware verification methodologies
(UVM, UVM-e). This involves coding new verification components, integrating existing verification components,
reference models, implementing metrics collectors and data/timing checks, integrating the DUT’s RTL source
with the verification environment, creating the required build infrastructure, and implementing scenarios and
tests.

This phase is mostly about programming using object/aspect-oriented languages (e.g. SystemVerilog,
e-Language) and so�ware design pa�erns. I would say that, as a rule, pre-silicon functional verification is 90%
object-/aspect-oriented programming and 10% digital circuit design.

 Simulate the design, debug

Once you have finished coding a self-contained portion of the verification environment you will begin running
simulations using an RTL simulator (e.g. Incisive by Cadence, QuestaSim by Mentor, VCS by Synopsys). Any bugs
will emerge either in the design or the verification environment. These will have to be fixed together with the
designer, system architect and so�ware engineers.

 Collect metrics and track verification progress

During this phase you will run test suites in order to collect metrics and achieve verification goals. To do this you
will use verification automation tools, such as Cadence's vManager or Mentor's Questa Verification Manager. Any
metrics collected will be analyzed and eventually the verification environment will be enhanced to address them.

 Report bugs

Once you identify a bug or an issue, or if you have doubts as to the correctness of the design/specification, you
should open a discussion with one of the DUT’s stakeholders (e.g. the designer, architect, so�ware engineer). You
can do this either informally, over a cup of coffee or by email, or formally, by means of a bug reporting system
(e.g. Bugzilla, YouTrack, Jira Software) .

 Collaborate with others

Collaboration skills are highly valued, just like in any other high-tech job. You will always be part of a team, be this
a team of two, ten or more people. You will take part in various meetings and bug analysis sessions, write emails,
write documents (e.g. specifications, reports), give presentations, train others, hand over your work to others, and
take over work from others, etc. All of these activities will help improve your communication and language skills.
Multicultural verification teams mostly work in English, but other languages, like German, Hebrew and French, can
be a plus.

TABLE OF CONTENTS

(©) Amiq Consulting, 2016

https://en.wikipedia.org/wiki/Hardware_verification_language
https://en.wikipedia.org/wiki/List_of_HDL_simulators
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html#section1
https://www.mentor.com/products/fv/questa/
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://cadence.com/products/fv/vmanager
https://www.mentor.com/products/fv/questa-verification-management/
http://www.bugzilla.org/
https://www.jetbrains.com/youtrack/
https://www.atlassian.com/software/jira

 Practical experience in So�ware Debug

Debugging the verification environment or the DUT’s RTL can be time consuming if you have no experience of
so�ware debugging (e.g. using GDB for C/C++, Eclipse for Java). Simple debugging tactics like messaging,
step-by-step debugging, application profiling should be second nature to you.

 Practical experience with Verilog/VHDL

You should have some digital circuit design experience of either Verilog or VHDL. You will be required to
understand and debug components such as FIFOs, finite state machines, pipelines, communication protocol
interfaces, memories, clock domain crossings, etc. You can use Asic World and Eda Playground in order to
practice these skills.

 Practical Experience with Linux environment

The semiconductor industry uses Linux-based OSes extensively for research & development activities, so
experience of Linux is highly appreciated. Verification projects have lots of similarities with so�ware projects.
This is why experience of version control systems (e.g. GIT, SVN), build systems (Make-, Perl- or Python-based),
and [shell] scripting languages (Perl, Python, Bash) will allow you to adapt quickly to different project
infrastructures.

 Practical experience with Generic and Object Oriented Programming

You will need generic programming experience of languages like C. The reason for this is
that all other programming knowledge and skills have generic programming as a basis.

Practical experience of languages like Java and C++ is a must. All verification
domain specific languages have object-oriented traits and 80% or more of functional
verification is programming.

You need to understand concepts like inheritance, namespaces, and encapsulation. And by
practical experience I mean “complete an average complexity project from start to finish
involving activities such as coding, debugging and testing”.

Required Practical Skills

 Digital Circuits Design

You need to master subjects such as Boolean algebra, combinational logic, sequential logic, latches, flip-flops, and
finite state machines in order to understand and debug digital circuits. You also need to understand their real life
applications, such as FIFOs, muxes, look-up tables, clock domain crossings, memories, simple serial or parallel
communication protocols (e.g. I2C, SPI, AHB), and error correction (de)coders. Knowledge of basic design pa�ern
implementation in Verilog or VHDL is a plus.

This section details the theoretical knowledge you should have before embarking on a
career in functional verification.

 Algorithms and Data Structures

You should know the basics of algorithm implementation and data structure design. Data
checking and protocol monitoring require knowledge of various search algorithms, while
layered communication protocols require knowledge of data structure implementations
and transformations, etc.

Required Knowledge

TABLE OF CONTENTS

(©) Amiq Consulting, 2016

https://en.wikipedia.org/wiki/Hardware_verification_language
https://en.wikipedia.org/wiki/Hardware_verification_language
https://en.wikipedia.org/wiki/Verilog
https://en.wikipedia.org/wiki/VHDL
http://www.asic-world.com/
https://www.edaplayground.com/
https://git-scm.com/
https://subversion.apache.org/
https://www.gnu.org/software/make/
https://www.perl.org/
https://www.python.org/
https://www.perl.org/
https://www.python.org/
https://www.gnu.org/software/bash/
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture
https://en.wikipedia.org/wiki/Verilog
https://en.wikipedia.org/wiki/VHDL
https://docs.oracle.com/javase/tutorial/
http://www.learncpp.com/

Some projects may also require experience of the FPGA workflow (synthesis flow, floorplanning,
timing constraints), such as through prototyping projects or collaboration with a lab. Experience of Matlab,
Octave or similar languages is a big plus if you need to verify signal processing or mathematical functions.
These types of DUT require a mathematical model that is almost impossible to implement using a
hardware verification language or too complex to implement using C/C++.

Digital Signal Processing knowledge will reveal to you the strengths and weaknesses of various algorithm
implementations, which in turn will increase the odds of your any finding bugs. Communication Protocols and
Networking knowledge will help you to understand the corner cases of a protocol you need to stress. Knowledge
of Microprocessor/Microcontroller Architecture will allow you to understand the data computing flows inside
the system and how they interact with other components, both hardware and so�ware. Familiarity with System-
on-Chip Architecture (e.g. the Raspberry Pi’s BCM2836 SoC) and Network-on-Chip (e.g. AMBA-AHB) will enable
you to understand the architecture of highly integrated devices. These are all complemented by experience and
knowledge of embedded programming.

So�ware Design Pa�erns will provide you with the tools required to develop flexible, reusable and
debug-friendly verification components and environments. It is also useful to have experience of Analog Design,
especially if you plan to follow a mixed signal verification career path.

The knowledge and experience described in this section will make a big difference
since they will a) help you understand the system you are verifying at a higher level of
abstraction, b) help you verify various types of functionality, and c) allow you to move
through different integration levels and identify bugs at an architectural level.

Some systems or higher levels of integration you may encounter will require
embedded programming experience (i.e. low level programming, debugging using
tools such as microcontroller/processor emulators.

It will also be considered a plus to have used at least one of the commercially available
simulators (e.g. Incisive by Cadence, QuestaSim by Mentor or VCS by Synopsys) to run
simulations, inspect waveforms, debug RTL issues or analyze coverage metrics (e.g.
code coverage).

Nice to Have

There are a few so� skills that are a must and which one way or another are
prerequisites for any job you might apply for:

 Determination

 Inquisitiveness

 Detail-oriented approach

 Good English communication skills, both in writing and speaking

A future post on the AMIQ blog will provide you with a more detailed account of the so� skills, perks and
challenges of this job.

Required Soft Skills

TABLE OF CONTENTS

(©) Amiq Consulting, 2016

https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html#section1
https://www.mentor.com/products/fv/questa/
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md
https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture
http://www.amiq.com/consulting/blog/
http://www.mathworks.com/
https://www.gnu.org/software/octave/
https://en.wikipedia.org/wiki/Network_on_a_chip

To find out more just send an email to career@amiq.com.

Other interesting resources:

 Semiconductor Industry Infographics - Infographics that help you understand
 the semiconductor industry at a glance

 Fabless Semiconductor Companies

 Semiconductor Fabrication Plants

 semiwiki.com – a forum dedicated to semiconductor industry news

 Details of IC production here and here

 AMIQ Consulting Blog

 Verilab Blog

 Wilson Research Group and Mentor Graphics study

 Accounts of some very expensive so�ware bugs here ($370 million) and here ($327.6 million).

 A nice intro to Verilog, SystemVerilog on Asic World

 A commercial simulator on Eda Playground

Further Reading and Resources

TABLE OF CONTENTS

(©) Amiq Consulting, 2016

https://www.google.ro/search?q=semiconductor+industry+infographic&espv=2&biw=1906&bih=964&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwjg76DB47nOAhUECCwKHfhgCi8QsAQIHA
https://en.wikipedia.org/wiki/Category:Fabless_semiconductor_companies
https://en.wikipedia.org/wiki/List_of_semiconductor_fabrication_plants
https://en.wikipedia.org/wiki/List_of_semiconductor_fabrication_plants
http://www.adapteva.com/andreas-blog/semiconductor-economics-101/
http://www.amiq.com/consulting/blog
http://www.gsaglobal.org/wp-content/uploads/2013/10/20120501_A_Lean_Fabless_Semiconductor_Business_Model.pdf
http://www.verilab.com/
https://blogs.mentor.com/verificationhorizons/blog/2015/01/21/prologue-the-2014-wilson-research-group-functional-verification-study/
https://en.wikipedia.org/wiki/Cluster_(spacecraft)
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
http://www.asic-world.com/
https://www.edaplayground.com/

