
 Portable Stimulus Driven SystemVerilog/UVM 
verification environment for the verification of a high-

capacity Ethernet communication endpoint 

Andrei Vintila, AMIQ Consulting

Ionut Tolea, AMIQ Consulting

© Accellera Systems Initiative 1



Introduction

• Block

• Requirements

• Traditional Approach

• PSS Approach

© Accellera Systems Initiative 2





Recap of system features

• Bidirectional traffic: 
– TX 

– RX Correct 

– RX Corrupted

• Control block: Configured/Not configured
– Enables the TX traffic capability of the system

• Filtering block: Configured/Not configured
– Enables the system capability of discarding corrupted traffic

© Accellera Systems Initiative 4



Requirements

• Verify all data paths
– Different types of packet characteristics

– Different types of configuration for the blocks

– Different blocks configured / Different interfaces driven

• Ensure the re-usability of the TB

© Accellera Systems Initiative 5



Traditional approach

• Re-use VIPs between TBs

• Re-use TBs between projects

• Re-use infrastructure from block level TBs

• Create individual testcases for each interesting scenario

© Accellera Systems Initiative 6



Issues

• Creating dependencies between TBs
– Different layers of integration

– Missing a good management of what can be re-used
• Compatibility between block level TBs

• Block level specific implementation

• A huge number of testcases implemented
– Small deviations in traffic/configuration -> New scenario

– Directed testcases -> Non-reusable logical layer sequences

© Accellera Systems Initiative 7



Idea behind PSS approach

• Break the functionality of the system in modular actions

• Offer a software view when simulating RTL
– A system feature translates in multiple software actions

– Each software action has a correspondent in hardware stimuli

– Hardware stimuli take a different form on each layer of integration

• The PSS model puts constraints on the implementation quality
– Increase re-usability

– Lower debug time

© Accellera Systems Initiative 8



PSS as an abstraction layer

• Better control for directed 
scenario definition

• Better planning for verification 
strategy

• Ease testcase portability across 
multiple layers of integrations 
and platforms

© Accellera Systems Initiative 9



Guidelines

• Encapsulate run-time configuration in actions

• SystemVerilog/UVM sequence layering should be used to bridge gaps 
between transaction level sequences and system level actions

• Synchronization and timing should translate into actions on PSS layer 
and event triggers on SV layer

• Coverage and logical constraints -> PSS Layer

• Protocol constraints -> SV Layer

© Accellera Systems Initiative 10



Implementation

component master_cpu_c {

action config_0 {
rand int in [2..5] arg;

exec body SV = """\
config_0 seq = config_0::type_id::create

("seq_0");\
seq.local_arg = {{arg}};""";

};

...............................

action setup {
activity {

sequence {
do config_0;
do config_1;
parallel {

do config_2;
do config_3;

};
};

};
};

...............................
};

© Accellera Systems Initiative 11

enum line_rate_e {l_10G, l_25G, l_100G};
enum cfg_interface_e {SERIAL, PARALLEL, HIGHSPEED};
typedef bit[47:0] uint48_t;

// Display controller definition
component master_c {

action mac_config {
rand line_rate_e line_rate;
rand cfg_interface_e cfg_interface;
rand bool enable_rx;
rand bool enable_tx;
rand bool enable_tx_fc;
rand bool enable_rx_fc;
rand bool strip_header;
rand bool check_crc;
rand bool pause_watermark_high;
rand bool pause_watermark_low;

};
.............................



Generated Scenarios 1

© Accellera Systems Initiative 12



Generated Scenarios 2

© Accellera Systems Initiative 13



Project Application

• Replace directed testcases with 
PSS based test generation

• Ease debug with scenario flow 
view

• A tighter infrastructure for 
verification which favors re-use

© Accellera Systems Initiative 14



Conclusions

• PSS standard has all the necessary features to accommodate a higher 
abstraction layer over a SV/UVM environment.

• Due to extensive support for PSS tools, this approach bridges the 
communication gap between verification engineers and system 
architects

• A general recipe can be defined for VE development flow

© Accellera Systems Initiative 15



Questions

© Accellera Systems Initiative 16



  

 

 Portable Stimulus Driven SystemVerilog/UVM 
verification environment for the verification of a 
high-capacity Ethernet communication endpoint 

Andrei Vintila, AMIQ Consulting

Ionut Tolea, AMIQ Consulting

© Accellera Systems Initiative 1



  

 

Introduction

• Block

• Requirements

• Traditional Approach

• PSS Approach

© Accellera Systems Initiative 2



  

 



  

 

Recap of system features

• Bidirectional traffic: 
– TX 

– RX Correct 

– RX Corrupted

• Control block: Configured/Not configured
– Enables the TX traffic capability of the system

• Filtering block: Configured/Not configured
– Enables the system capability of discarding corrupted traffic

© Accellera Systems Initiative 4



  

 

Requirements

• Verify all data paths
– Different types of packet characteristics

– Different types of configuration for the blocks

– Different blocks configured / Different interfaces driven

• Ensure the re-usability of the TB

© Accellera Systems Initiative 5



  

 

Traditional approach

• Re-use VIPs between TBs

• Re-use TBs between projects

• Re-use infrastructure from block level TBs

• Create individual testcases for each interesting scenario

© Accellera Systems Initiative 6



  

 

Issues

• Creating dependencies between TBs
– Different layers of integration

– Missing a good management of what can be re-used
• Compatibility between block level TBs

• Block level specific implementation

• A huge number of testcases implemented
– Small deviations in traffic/configuration -> New scenario

– Directed testcases -> Non-reusable logical layer sequences

© Accellera Systems Initiative 7



  

 

Idea behind PSS approach

• Break the functionality of the system in modular actions

• Offer a software view when simulating RTL
– A system feature translates in multiple software actions

– Each software action has a correspondent in hardware stimuli

– Hardware stimuli take a different form on each layer of integration

• The PSS model puts constraints on the implementation quality
– Increase re-usability

– Lower debug time

© Accellera Systems Initiative 8



  

 

PSS as an abstraction layer

• Better control for directed 
scenario definition

• Better planning for verification 
strategy

• Ease testcase portability across 
multiple layers of integrations 
and platforms

© Accellera Systems Initiative 9



  

 

Guidelines

• Encapsulate run-time configuration in actions

• SystemVerilog/UVM sequence layering should be used to bridge gaps 
between transaction level sequences and system level actions

• Synchronization and timing should translate into actions on PSS layer 
and event triggers on SV layer

• Coverage and logical constraints -> PSS Layer

• Protocol constraints -> SV Layer

© Accellera Systems Initiative 10



  

 

Implementation

component master_cpu_c {

action config_0 {
rand int in [2..5] arg;

exec body SV = """\
config_0 seq = config_0::type_id::create

("seq_0");\
seq.local_arg = {{arg}};""";

};

...............................

action setup {
activity {

sequence {
do config_0;
do config_1;
parallel {

do config_2;
do config_3;

};
};

};
};

...............................
};

© Accellera Systems Initiative 11

enum line_rate_e {l_10G, l_25G, l_100G};
enum cfg_interface_e {SERIAL, PARALLEL, HIGHSPEED};
typedef bit[47:0] uint48_t;

// Display controller definition
component master_c {

action mac_config {
rand line_rate_e line_rate;
rand cfg_interface_e cfg_interface;
rand bool enable_rx;
rand bool enable_tx;
rand bool enable_tx_fc;
rand bool enable_rx_fc;
rand bool strip_header;
rand bool check_crc;
rand bool pause_watermark_high;
rand bool pause_watermark_low;

};
.............................



  

 

Generated Scenarios 1

© Accellera Systems Initiative 12



  

 

Generated Scenarios 2

© Accellera Systems Initiative 13



  

 

Project Application

• Replace directed testcases with 
PSS based test generation

• Ease debug with scenario flow 
view

• A tighter infrastructure for 
verification which favors re-use

© Accellera Systems Initiative 14



  

 

Conclusions

• PSS standard has all the necessary features to accommodate a higher 
abstraction layer over a SV/UVM environment.

• Due to extensive support for PSS tools, this approach bridges the 
communication gap between verification engineers and system 
architects

• A general recipe can be defined for VE development flow

© Accellera Systems Initiative 15



  

 

Questions

© Accellera Systems Initiative 16


	Slide 1
	Introduction
	Example System
	Recap of system features
	Requirements
	Traditional approach
	Issues
	Idea behind PSS approach
	PSS as an abstraction layer
	Guidelines
	Implementation
	Generated Scenarios 1
	Generated Scenarios 2
	Project Application
	Conclusions
	Slide 16
	Slide 1
	Introduction
	Example System
	Recap of system features
	Requirements
	Traditional approach
	Issues
	Idea behind PSS approach
	PSS as an abstraction layer
	Guidelines
	Implementation
	Generated Scenarios 1
	Generated Scenarios 2
	Project Application
	Conclusions
	Slide 16

