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Abstract - Functional verification using co-emulation has seen a growing trend due to its main advantage: testbench 
acceleration. Co-emulation requires two main things: (1) a connection between the host machine running the testbench and 
the hardware platform where the design is synthesized, and (2) a software component for interacting with the design. 
Most currently available solutions for achieving a complete co-emulation environment are proprietary. This paper 
describes an Open-source Framework for Co-emulation (OFC) used for communication between a UVM-SystemVerilog 
testbench and a design emulated on the FPGA logic of a PYNQ board. The OFC framework is split into two main 
components: a TCP socket-based client-server connection and a Python component that interacts with the FPGA using the 
API provided by Xilinx for the PYNQ board. Owing to its modular implementation, the two components can be used either 
together or separately, depending on the user’s needs.     
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I.   INTRODUCTION 
Using co-emulation involves migrating a design under test (DUT), together with parts of the verification testbench 

logic, onto a hardware platform (typically an FPGA). One interesting use case for co-emulation is verification 
testbench acceleration as this can achieve shorter runtimes for test scenarios, verification of RTL features which 
depend on long simulation times, realistic performance benchmarking of the DUT, stress testing etc. 

When migrating the design under test onto the FPGA board, the driving and the monitoring logic must be redefined, 
since the testbench can no longer interact directly with the DUT. Instead, the testbench connects to the hardware 
platform in order to pass over the generated stimulus for the intended test scenario. Subsequently, the hardware 
platform takes over the responsibility for controlling and reacting to the DUT interfaces by introducing new 
synthesizable monitoring and driving components.  

The solution presented in this paper is that of an open-source framework for co-emulation (OFC) using the PYNQ 
hardware platform. As part of the Zynq family, the PYNQ board has a “Processing System” side (PS) and a 
“Programmable Logic” side (PL). As such, the OFC framework provides two main components for interacting with 
the FPGA platform: 

1. OFC SV-Python: connects an UVM-SystemVerilog testbench to a Python component (here, the PS side of a 
PYNQ board), through DPI-C and TCP sockets[1]  

2. OFC Python-FPGA: connects the PS side and the PL side of the PYNQ board (via the API for PYNQ provided 
by Xilinx[2]) 

For debugging purposes, the OFC framework also provides logging capabilities. 
 

 
Figure 1. Overview of the OFC components. 

 
 
 
 
 



II.   OVERVIEW 

 
Figure 2. Overview of the connection between the testbench and the DUT. 

 
The client communication API is defined in a DPI-C layer and is responsible for transferring messages containing 

stimuli to the Python server located on the PS side of the PYNQ board.  
The interaction between the synthesized hardware and the server is done through Direct Memory Access (DMA) 

operations. The DMA IP is provided by Xilinx and can be integrated through the Vivado environment[3]. The 
manipulation of the DMA modules is done using the Pynq API.  
  

III.  OFC SV-PYTHON CONNECTION 

 
Figure 3. OFC SV-Python Class Diagram. 



 
The first component of the OFC framework is the one connecting a testbench based on UVM and SystemVerilog 

with the Processing System side of the PYNQ hardware platform, or, if needed, with another python component.  
To integrate this component, the user must define the following: 

- the behavior of the Python Server when a message is received on the Python side 
- the behavior of the OFC specific monitor when a message is received by the testbench 

  
A more detailed description of the OFC SV-Python functionality is presented below. 
 

1. OFC Driver 
In a verification environment, the DUT is normally stimulated using UVM drivers. The OFC SV-Python 

Framework provides a driver that can be used for the co-emulation process. The role of the OFC driver is to 
send items to the OFC Python Server instead of directly stimulating the DUT.  

In terms of implementation, the client-server communication is performed using strings. As a result, each 
item sent by the OFC driver requires a string conversion operation. The item2string() function takes care of 
this aspect by first packing the item into a list of bytes (using UVM’s pack_bytes() function) and then 
converting each byte to the corresponding ASCII character. If the Design Under Test has multiple input 
interfaces/protocols this means that the SV-Testbench side has multiple active agents generating inbound 
traffic. When OFC is used, all agents drive data to a singular OFC connector inside the Python Server and 
then the OFC connector sends the received data to the proper DUT interface.  

The OFC connector can receive items from multiple testbench sequencers. In this case, the user is 
responsible for providing a way to differentiate among various item sources. The OFC connector uses this 
source information to further drive the items to the corresponding DUT interface. The user is responsible for 
providing this item source information or he/she can use an existing mechanism from the OFC framework. 
This existing mechanism inserts the interface/protocol name, defined within the driver configuration object, 
into the communication string/item. The OFC connector will then extract this string and identify the correct 
interface to which the item should be driven. 

 
      function string item2string(uvm_object req); 
  byte unsigned  p_bytes []; 
  string    item_string = ""; 
  string    string_id; 
  if(!req.pack_bytes(p_bytes)) 
   `uvm_error(get_name(), "Could not pack item!") 
  foreach(p_bytes[j]) begin 
   string byte_string; 
   $sformat(byte_string, "%h", p_bytes[j]); 
   item_string = {item_string, byte_string};  
  end 
  string_id = ofc_driver_config.protocol_identifier; 
  item_string = {string_id, item_string}; 
  return item_string; 
      endfunction: item2string 

 Snippet 1. The item2string() function. 
 

Each item converted to a string (and where appropriate with the protocol label attached) is sent to the OFC 
Server Connector. 

 
2. OFC Server Connector 

The connection between SystemVerilog and the OFC Python Server is achieved through the OFC Server 
Connector. The OFC Server Connector uses C++ functions, defined in the DPI-C layer and exported in the 
SystemVerilog code, to create and manipulate the TCP socket used to communicate with the OFC Server 
Connector. The interaction between a UVM-SystemVerilog testbench and the OFC Server connector is done 
through two tasks:  

- send_item(): to send items from the testbench to the OFC Python Server 
- recv_item(): to receive items processed by the OFC Python Server  



 
When initializing the OFC Server Connector, a few parameters need to be provided via the OFC Server 

Connector Configuration Object: 
- hostname and port: the IP/hostname and port number of the Python Server 
- delim: the character used for delimiting the items within a message (the default value for the 

delimiter character is endline) 
- timeout: the number of milliseconds that should be waited when sending or receiving an item 
- end_item: the item that signals the end of the simulation 

 
The OFC Server Connector has four main functionalities: 

a. Configuring the connection to the OFC Python Server 
The OFC Server Connector is responsible for initiating a connection with the OFC Python Server. 
This is done by calling the configure() DPI-C function and giving as arguments the server IP address 
and the port number. The connection, once established, is kept alive throughout the entire simulation 
time. 
 

       function void setup_connection(); 
        // Create connection to server 
        if(configure(ofc_server_connector_config.hostname,    
                                 ofc_server_connector_config.port) != 0) 
        $error("Could not establish connection!"); 
        // Set how many milliseconds to wait for  
                     // socket events when reading/writing to it 
        set_timeout(ofc_server_connector_config.timeout); 
       endfunction: setup_connection 

Snippet 2. The setup_connection() function. 
 

b. Sending items to the OFC Python Server 
Items received through the send_mbox mailbox are sent to the OFC Python Server using the function 
send_data(). Each item is concatenated with the delimiter character so that on the other side the 
Python Server can reconstruct and distinguish each item within a message. 
 

              task send_to_remote(); 
          int send_rsp; 
          string item_str; 
             send_mbox.get(item_str); 
          item_str = {item_str, ofc_server_connector_config.delim}; 
           do begin 
           send_rsp = send_data(item_str, item_str.len());  
            if (send_rsp > 0)  
         // While only part of the message was sent to the server 
         // save the other part so it can be sent at next iteration 
         item_str = item_str.substr(send_rsp, item_str.len()-1); 
                      //exit loop when entire message was sent 
         end while (send_rsp != item_str.len()) ;  
        endtask 

Snippet 3. The send_to_remote() function. 
  

c. Receiving items from the OFC Python Server 
Each time a message is received by the Connection structure, a notification (receive_from_server) 
is sent to the SystemVerilog testbench. The entire message is split into string items based on the 
delimiter and each item sent through the recv_mbox mailbox. 
 
 
 



              task recv_from_remote(); 
        string items[]; 
        // Wait for the notification from the receive thread 
        @receive_from_server; 
        // consume all transactions in queue 
        while (msgs_q.size() > 0) begin 
        // split message into items 
        split(msgs_q.pop_front(),  
                                ofc_server_connector_config.delim,  
                                items); 
        foreach (items[i]) begin 
        recv_mbox.put(items[i]); 
                                 // end of test mechanism 
        if(items[i] == ofc_server_connector_config.end_item)  
       end_of_test = 1; 
        end  
        end 
        endtask 

Snippet 4. The recv_from_remote() function. 
 

d. Signaling the end of the simulation 
When the end_item configured in the OFC Server Connector Configuration class is received, the 
end_of_test flag is set, as seen in the code of recv_from_remote(). The OFC Server Connector 
provides a task that waits for the above flag to be set. This functionality can be used to end the 
simulation. 
 

       task wait_for_end_item(); 
       wait(end_of_test == 1); 
       endtask 

Snippet 5. The wait_for_end_item() function. 
 

The run_phase() of the OFC Server Connector consists of configuring the connection, starting a thread 
for receiving messages in the DPI-C layer and waiting for messages to be sent and received. The receive 
thread is given by an infinite loop in the DPI-C layer which waits for messages. Without this loop, 
messages from the Python Server cannot be received. 

 
      virtual task run_phase(uvm_phase phase); 
  setup_connection(); //Initialize connection to server 
  fork   
   recv_thread(); //Start recv thread in DPI-C layer   
  join_none 
  fork    
   forever send_to_remote(); 
   forever recv_from_remote(); 
  join 
      endtask 

Snippet 6. The run_phase() of the OFC Server Connector. 
 

For more information on how the OFC connector works, see “Non-Blocking Communication in 
SystemVerilog using DPI-C”[1]. 
 

3. OFC Python Server.  
The PYNQ processing system contains the Python Server. This server processes items received in a string 

format based on the user’s needs. The OFC SV-Python component provides a server class with an abstract 
function for computing the response (compute_response()) which receives a list of string items and processes 
them in order to be sent back to the client. This function is overridden in a child class by the user. In a co-



emulation environment, its role is to capture requests received from the testbench and transfer them to the 
DUT through Direct Memory Access operations. 

 Every interface type has an associated Direct Memory Access module, and therefore the server is 
responsible for unpacking and mapping the stimulus to the protocol-specific Direct Memory Access block.  
Driving the item to the proper interface means that the Python Server triggers a DMA access for the decoded 
interface ID.  

The communication with the Direct Memory Access IPs from the programmable logic side is achieved via 
the Python API provided by Xilinx for the PYNQ board and is part of the OFC Python-FPGA framework 
component, which will be described in the next chapter.  
 

4. Testbench 
Compared to a simulation testbench, a co-emulation testbench does not connect directly to the DUT; 

instead, it interacts with the tested module via the PYNQ board using the TCP client API implemented in 
DPI-C.  

None of the testbench components should depend on clock cycles or timing values, since the clock is 
generated in the FPGA and cannot be controlled from the testbench. Only the drivers and monitors need to 
change, assuming that the rest of the testbench does not depend on the clock signal. 

a. Driving  
To adapt a testbench for a co-emulation environment, the drivers should be overridden through the 
UVM factory mechanism with the driver provided by the OFC SV-Python Driver.  
 

b. Monitoring 
For the monitoring process, a new monitor has to be defined. All messages are received by the OFC 
Server Connector component from the OFC Python Server regardless of the protocol type of the 
item. Therefore, the new monitor should take the received items from the recv_mbox of the OFC 
Server Connector, convert them from string into specific items of the testbench and send them 
through the appropriate analysis ports.  

 
IV.   OFC PYTHON-FPGA INTERACTION 

The second component of the OFC framework is the one connecting Python to the Programmable Logic side of the 
PYNQ board. This is achieved using the PYNQ Overlay API provided by Xilinx.  

This component offers three functionalities: 
 

1. Configuring the PL side of the PYNQ board. 
The FPGA logic of the PYNQ board can be programmed using a bitstream file and a hardware description 

file, both of which can be generated through the Vivado environment.  
The initialization of this class is also responsible for finding the DMA IPs within the design. These IPs 

will be used for transferring data between Python and the PL side. Each DMA has two channels: recvchannel 
and sendchannel. In addition, each channel has an associated buffer used for storing data after receiving or 
sending a transfer. 



      def __init__(self, bit_file): 
           # Program the PL side using the bitstream file 
           # The overlay also holds the design IP and hierarchies as attributes 
           self.overlay = Overlay(bit_file) 
           # ... 
           # Extract DMA IPs from overlay 
           self.dma = {} 
           for ip in self.overlay.ip_dict.keys():  
               if 'axi_dma' in self.overlay.ip_dict[ip]['type']: 
                   self.dma[ip] = getattr(self.overlay, ip) 
           # ... 
           self.buffers = {} 
           for key in self.dma.keys(): 
                self.buffers[key] = amiq_ps_pl_connector_buffers() 

Snippet 7. The initialization of the Python-FPGA connector. 

2. Sending items through DMA to the PL side. 
Sending items to the PL side can be done using the send_to_dma() function. This function takes as 

arguments an item or a list of items and the name of the DMA to be used for the transfer. This transfer is 
done in a blocking manner so as to ensure that every item reaches the DUT interfaces. 

Each item should be a number with a size corresponding to the DMA sendchannel size, as the DMA 
operates with a list of bits. The HDL driver should know how to interpret the integer number and send it onto 
the DUT interfaces.  

Sending a list of items with a size not equal to the buffer used for the DMA transfer will result in an error 
unless the force_send flag is set.  

Sending entire lists of items at a time will result in back-to-back transactions stimulating the emulated 
design. If a fine granularity for delays between packets is required, then the delay measured in clock cycles 
can be packed within the item and processed by the HDL driver. This is an advantage of using FIFO modules 
within the HDL side. 

      def send_to_dma(self, to_send, dma_name, force_send = False):  
          # ... 
          dma_buffer = self.buffers[dma_name].send 
          np.copyto(dma_buffer, to_send)  
          self.dma[dma_name].sendchannel.transfer( dma_buffer )  
          self.dma[dma_name].sendchannel.wait()  
          # ... 

Snippet 8. The send_to_dma() function. 
 

3. Receiving items from the PL side through DMA.  
Receiving items from the PL side can be done through the recv_from_dma() function. This function takes 

as argument the name of the DMA from which the transfer is required and stores the received item in the 
receive buffer associated with said DMA. This transfer is done in a non-blocking manner, so that if no item 
is monitored, the program does not block. 

Each item received is a number with a size corresponding to the DMA recvchannel size. 
      def recv_from_dma(self, dma_name): 
           # ... 
           dma_buffer = self.buffers[dma_name].recv 
           # Indicate the buffer which will store the received item 
           # and wait for transfer to complete 
           self.dma[dma_name].recvchannel.transfer(dma_buffer)   
           self.dma[dma_name].recvchannel.wait_async()  
           # ... 
           return dma_buffer 

Snippet 9. The recv_from_dma() function. 
 



V.   FPGA  
The hardware side is responsible for transferring items received from the software to the device under test and then 

transferring the results back to the software for processing. To accomplish this connection, a Direct Memory Access 
IP is used for each of the DUT interfaces. 

The Direct Memory Access modules communicate with the emulated design through the synthesizable drivers and 
monitors, which are called hereafter HDL components. The HDL components implement two interfaces: 

1. One for communicating with the Direct Memory Access module 
2. One for communicating with the device under test.  

 
 

 
Figure 4. Hardware connections 

 
The Direct Memory Access IP interfaces are based on the widely adopted AXI4-stream protocol. Therefore the 

HDL components will contain an AXI4-stream slave interface used to receive information from the Direct Memory 
Access modules (drivers) or an AXI4-stream master interface used to transfer information to the Direct Memory 
Access modules (monitors). The code for the AXI4-stream interface can be generated through Vivado. The other 
interface of the HDL components will be the targeted interface of the emulated design. 

In order to be able to send and receive multiple items at the same time, a FIFO IP is also introduced between each 
DMA-HDL component. Using FIFOs increases the performance of the co-emulation project by decreasing the number 
of DMA accesses, but also allows the user to insert a specific delay between the items sent through a single DMA 
transfer. 

Debugging designs implemented in FPGA logic can be quite difficult without waveforms. The following methods 
can be used for the debugging process:  

- Instantiating a debug IP, for example: the Integrated Logic Analyzer (ILA) Core provided by Xilinx[4] 
- Using the integrated log capabilities of the OFC Python-FPGA component 
- Creating your own debug monitor within the HDL side 

 
VI.   INTEGRATION 

To integrate the OFC framework for a co-emulation environment, the user should: 
1. Replace the UVM drivers with the OFC driver through UVM factory override 
2. Make sure that each item has pack and unpack functions  
3. Create an OFC specific monitor which receives string messages from the OFC Server Connector, converts 

them into items and sends them through the appropriate analysis port 
4. Extend the OFC Python Server in order to define the compute_response() function. The comupte_response() 

function receives a list of string items and should then: 
- unpack them for DMA accesses   
- use the OFC Python-FPGA Connector to send stimuli 
- use the OFC Python-FPGA Connector to receive monitored items 
- return packed monitored items 

5. Create the HDL drivers and monitors and connect them to DMA modules within the PL side 
 

VII.   LIMITATIONS  
This architecture implies some limitations since the testbench no longer has direct access to the signals of the DUT 

interfaces. This means that coverage, checks and any other logic that relies on the signal level changes have to be 
modified.  For example, SystemVerilog Assertions will have to be synthesized and moved to the emulated design. 
Another example could be finely controlling the behavior of interface signals used to drive valid, backpressure, etc. 



That behavior will also have to be implemented within the HDL drivers. However, these limitations are also valid for 
any co-emulation environment. 

Co-emulation is best suited for high level scenarios where there is no need for fine control of the signals. It is also 
more advantageous to co-emulate a data processing block or streaming block than a forwarding block, such as an 
arbiter or a scheduler. 

The solution provided by this framework uses Direct Memory Access transfers for each set of stimuli and monitored 
items. These transfers represent the main bottleneck of the described architecture. Therefore, the fewer Direct Memory 
Access operations made, the faster the co-emulation process will be. 

 
VIII.   CONCLUSIONS 

We have developed a modular open-source framework for co-emulation split into two main components. The user 
can integrate these components in order to create a connection between a UVM-SystemVerilog testbench and a Python 
environment, and/or to create a link between the PS side and the PL side of a PYNQ board. Owing to its modular 
design, the OFC framework can be used either as a whole, for a full co-emulation environment, or partially, to achieve 
SV-Python/Python-FPGA communication only.   

Integration of the OFC SV-Python component into a testbench requires the user to define an OFC monitor and the 
way in which the OFC Python Server processes transactions received from the testbench. This allows for maximum 
flexibility, as the user is not constrained in any way by the behavior of the framework. If the goal is a co-emulation 
process, then the OFC Python-FPGA component can be attached through the OFC Python Server. 

Co-emulating the functional verification testbench implies splitting drivers and monitors into timed and untimed 
components and connecting them. The suggested connection is based on a client-server communication and the use 
of Direct Memory Access operations. This architecture uses a PYNQ FPGA board since it provides a Python API 
required for the Direct Memory Access manipulation.  
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