
	

	

	

	

	

Yet	Another	Memory	Manager	(YAMM)	

	

	

by	Ionut	Tolea,	Andrei	Vintila	

	

	
AMIQ	Consulting	SRL	

Bucharest,	Romania	

	

http://www.amiq.com/consulting	

	

	

	

	

	

	

	

	

	

	

	

	

SNUG	2015	
	

Page	2	 Yet	Another	Memory	Manager	(YAMM)	

ABSTRACT	

This	 paper	 presents	 an	 implementation	 of	 a	 memory	 manager	 (MM)	 verification	 component	
suitable	for	simulated	functional	verification	environments.	Yet	Another	Memory	Manager	(YAMM)	
is	 a	 library	 that	 provides	 support	 for	 memory	 based	 operations	 based	 on	 the	 following	
requirements:	

 Easy	to	define	various	types	of	buffers	
 Easy	to	allocate	/	deallocate	buffers	
 Easy	to	search	for	specific	buffers	
 Ensure	address	space	consistency	(i.e.	allocated	buffers	do	not	overlap)	
 Provide	fine	grained	control	of	address	space	allocation	(support	address	alignment,	

different	size	resolution)	
 Provide	control	of	memory	buffers’	contents	(custom	buffer	contents	generation)	
 Easy	to	integrate	with	existing	verification	environments	
 Easy	to	debug	memory	allocation	/	deallocation	
 Implement	a	fast	allocation	/	deallocation	algorithm	
 Implement	different	allocation	modes	in	order	to	allow	different	address	space	

fragmentation	
 Implement	using	a	hardware	verification	language	(SystemVerilog)	

	
	 	

SNUG	2015	
	

Page	3	 Yet	Another	Memory	Manager	(YAMM)	

Table	of	Contents	
1.	Introduction	...	6

2.	User	Scenarios	...	6

3.	Requirements	..	6

4.	Memory	Management	Concepts	..	7

4.1	Memory	Space,	Access	Resolution	and	Buffers	..	7

4.2	Allocation	Mode	...	9

4.3	Access	Descriptor	..	10

5.	Data	types	..	10

5.1	Defines	...	10

	YAMM_ADDR_WIDTH	..	10

	Typedefs	..	10

5.2 Classes	...	10

	yamm_buffer	...	10

	yamm	..	12

	yamm_access	...	13

6.	Buffer	API	...	13

6.1	Buffer	modifiers	...	13

	 function	bit	allocate(yamm_buffer	buffer,	yamm_allocation_mode_e	allocation_mode	
=	RANDOM_FIT)	..	13

	 function	 yamm_buffer	 allocate_by_size(yamm_addr_width	 size,	
yamm_allocation_mode_eallocation_mode	=	RANDOM_FIT)	...	13

	function	bit	deallocate(yamm_buffer	buffer,	bit	recursive	=	1)	...	13

	function	bit	deallocate_by_addr(yamm_addr_width	addr)	..	13

	function	bit	insert(yamm_buffer	buffer)	...	14

	function	yamm_buffer	insert_access(yamm_access	access)	..	14

6.2	Buffer	searching	...	14

	function	yamm_buffer[$]	get_all_buffers_by_type(string	type_name)	14

	function	yamm_buffer	get_buffer(yamm_addr_width	addr)	...	14

	function	yamm_buffer[$]	get_buffers_by_access(yamm_access	access)	14

	 function	 yamm_buffer[$]	 get_buffers_in_range(yamm_addr_width	 start_addr,	
end_addr)	...	14

6.3	Buffer	Contents	API	..	15

	function	byte[]	get_contents()	...	15

	function	void	set_contents(ref	byte[]	data)	..	15

SNUG	2015	
	

Page	4	 Yet	Another	Memory	Manager	(YAMM)	

	virtual	function	void	generate_contents()	..	15

	virtual	function	bit	compare_contents(ref	byte[]	cmp)	..	15

	virtual	task	read_from_file(string	file_name)	..	15

	virtual	function	bit	write_to_file(string	file_name)	...	15

6.4	Debug	functions	...	15

	function	string	sprint_buffer(bit	recursive=0)	...	15

	function	bit	write_memory_map_to_file(bit	recursive=0)	...	15

	function	int	get_fragmentation()	..	16

	function	int	get_usage_statistics()	..	16

6.5	Other	buffer	utilities	..	16

	function	void	set_name(string	name)	...	16

	function	yamm_addr_width	end_addr()	..	16

	function	bit	access_overlaps(yamm_access)	..	16

	function	void	check_address_space_consistency()	..	16

7.	Yamm	API	...	16

	function	bit	allocate_static_buffer(yamm_buffer	buffer)	..	16

	function	void	build(string	name,	yamm_size_width	size)	..	16

	function	void	reset()	..	17

	function	yamm_buffer[$]	get_static_buffers()	...	17

8.	Management	Algorithm	Implementation	...	17

8.1	Memory	Map	Structure	...	17

8.2	Recursivity	...	18

8.3	Transparency	and	usability	..	19

8.4	Allocation	..	19

8.5	Deallocation	...	20

8.6	Insertion	..	20

9.	Usage	Examples	...	21

9.1	YAMM	Instantiation	...	21

9.2	Basic	Accesses	..	21

	Access	non‐overlapping	buffers	..	21

	Access	overlapping	buffers	...	21

9.3	Deterministic	Responses	...	22

9.4	Configure	Memory	Resources	..	22

	Static	Buffer	Allocation	...	22

SNUG	2015	
	

Page	5	 Yet	Another	Memory	Manager	(YAMM)	

	Dynamic	Buffer	Allocation	...	23

9.5	Memory	Snapshot	...	23

9.6	Check	Accesses	...	23

10.	Futher	Work	...	24

11.	Terminology,	Abbreviations	..	24

12.	References	...	25

	

Table	of	Figures	
Figure	1	Memory	Map	snapshot	during	simulation	..	8

Figure	2	Example	of	buffer	allocation	...	9

Figure	3.	Example	of	a	linked	memory	...	17

Figure	4.	Example	of	a	buffer	list	inside	a	buffer	..	18

Figure	5.	Example	of	a	free	buffers	list	...	18

Figure	6.	Example	of	an	allocation	...	19

Figure	7.	Example	of	a	deallocation	...	20

Figure	8.	Example	of	an	insertion	...	20

	

Table	of	Tables	
Table	1	Yamm_buffer	public	fields	...	10

Table	2	Yamm_buffer	public	functions	...	11

Table	3	Yamm	public	functions	...	12

Table	4	Yamm_access	public	fields	..	13
	
	 	

SNUG	2015	
	

Page	6	 Yet	Another	Memory	Manager	(YAMM)	

1.	Introduction	
Any	System	on	a	Chip	(SoC)	contains	at	 least	a	CPU	core,	a	communication	bridge	and	a	memory	
block	 that	 allows	 them	 to	 run	 software	 applications.	The	memory	 is	 used	by	 the	 communication	
bridge	as	a	buffer	zone	between	 the	application	and	 the	external	world,	while	 the	CPU	uses	 it	 to	
retrieve	or	save	application	data	(including	the	OS)	and	user	data.	More	than	a	single	process	might	
be	underway	at	any	given	time	in	a	SoC,	which	means	there	will	be	lots	of	interactions	(i.e.	memory	
accesses)	 between	 the	 three	 components	 during	 the	 lifetime	 of	 an	 application.	Most	 of	 the	 time	
these	interactions	must	be		non‐overlapping	in	order	to	avoid	memory	access	conflicts.	

Memory	access	conflicts	can	be	avoided	by	using	a	MM	which	will	allocate	or	deallocate	memory	
buffers	at	the	request	of	application	processes.	The	MM	allocates	space	statically	or	dynamically	by	
considering	 both	 the	 allocated	 space	 and	 the	 free	 space,	 mitigating	 memory	 fragmentation	 and	
leaks.		

The	MM	 is	 a	 core	 component	 of	 the	OS’s	 kernel	 and	 it	 can	 be	 used	 seamlessly	 in	 a	 system‐level	
verification	environment	that	runs	the	OS	(e.g.	by	using	the	final	product	in	the	lab	or	an	emulation	
engine).	In	the	case	of	simulated	functional	verification	environments,	the	OS	might	not	be	present	
due	to	simulation	capacity	or	verification	partitioning	reasons	and	in	that	case	a	dedicated	memory	
manager	 should	 be	 used.	 For	 example,	 top‐,	 subsystem‐	 or	 block‐level	 verification	 environments	
that	do	not	run	the	software	stack	will	have	to	use	a	verification	component	(e.g.	YAMM)	that	takes	
on	the	role	of	a	MM.		

YAMM	 stands	 for	 Yet	 Another	 Memory	 Manager.	 This	 paper	 presents	 the	 YAMM	 library,	 which	
implements	a	MM	verification	component.	

2.	User	Scenarios	
In	this	section	a	few	user	scenarios	are	presented	to	help	the	user	better	understand	the	role	of	a	
memory	manager	in	the	verification	process.	

Using	YAMM	to	drive	memory	accesses:	
 Generate	random,	non‐overlapping	accesses	
 Deliver	computed	read	responses	
 Verify	data	bridges	

Using	YAMM	to	monitor	and	check	memory	accesses:	
 Check	non‐overlapping	writes	
 Check	accesses	to	protected	areas	

Using	YAMM	to	generate	configurations:	
 Generate	a	table	of	non‐overlapping	memory	areas	

Using	YAMM	for	debug:	
 Dump	memory	map	contents	
 Compute	the	fragmentation	and	usage	levels	

3.	Requirements	
The	authors	of	this	paper	identified	the	following	requirements:	

 Easy	to	define	various	types	of	buffers	
 Easy	to	allocate	/	deallocate	buffers	
 Easy	to	search	for	specific	buffers	

SNUG	2015	
	

Page	7	 Yet	Another	Memory	Manager	(YAMM)	

 Assure	address	space	consistency	(i.e.	allocated	buffers	do	not	overlap)	
 Fine	grained	control	of	address	space	allocation	(support	address	alignment,	different	size	

resolution)	
 Provide	control	over	the	memory	buffers’	contents	(custom	buffer	contents	generation)	
 Easy	to	integrate	with	the	existing	verification	environments	
 Easy	to	debug	memory	allocation	/	deallocation	
 Implement	a	fast	allocation	/	deallocation	algorithm	
 Implement	different	allocation	modes	in	order	to	allow	different	address	space	

fragmentation	
 Implement	using	a	hardware	verification	language	(SystemVerilog)	

4.	Memory	Management	Concepts	

4.1	Memory	Space,	Access	Resolution	and	Buffers	

Memory	space	is	defined	as	the	continuous	sequence	of	addresses	within	limits	[start	address	:	end	
address].	The	start	address	and	end	address	relation	is	given	by	formula:	

mem_end_address – mem_start_address + 1 = 2N,	where	N	is	the	address	bus	bit	width.	

All	memory	locations	have	the	same	width	expressed	as	a	Bit	width	(e.g.	32	bit)	or	Byte	width	(e.g.	
4	bytes),	so	all	accesses	will	have	a	constant	granularity	(e.g.	4	bytes).	There	are	exceptions	to	these	
rules	in	the	sense	that	you	can	access	a	subdivision	of	a	location	by	using	a	mask.	For	example	you	
can	have	a	memory	with	location	granularity	of	4‐Bytes	that	allow	you	to	write	any	of	the	bytes	by	
using	 a	 mask	 of	 4	 bits,	 each	 bit	 indicating	 if	 the	 corresponding	 byte	 of	 the	 location	 should	 be	
written.	This	feature	increases	the	granularity	of	the	access	to	byte	level.	

The	byte	size	of	a	memory	is	given	by	the	formula:	

byte_size = 2N * location_byte_width	where	N	is	the	address	bus	bit	width.	

A	buffer	is	a	continuous	memory	space	defined	by	a	start	address,	an	end	address	and	the	inferred	
size	which	does	not	overlap	other	 areas.	This	means	 that	buffers	 are	not	 allowed	 to	overlap	one	
another,	 but	 they	 are	 still	 allowed	 to	 contain	 other	 buffers.	 This	 feature	 can	 be	 interpreted	 as	
changing	 the	 reference	 point:	 if	 a	 buffer	 is	 considered	 an	 area	 in	 the	memory	 then	 the	 enclosed	
(sub‐)buffers	will	 consider	 it	 as	 the	whole	memory.	This	 is	 useful	 to	define	 specific	 sub‐memory	
areas	in	the	memory	space.	The	start	address	and	end	address	relation	is	given	by	formula:	

size = end_address – start_address + 1	

As	you	can	see	there	are	similarities	between	a	memory	and	a	buffer	which	allow	us	to	model	the	
memory	as	a	buffer,	a	buffer	that	it	is	not	allocated	inside	another	buffer.	

Two	 types	 of	 buffers	 can	 be	 identified	 by	 the	 nature	 of	 their	 allocation:	 static	 and	 dynamic.	 The	
static	buffer	is	similar	to	any	other	buffer,	except	that	it	is	allocated	only	once	at	the	beginning	and	
will	not	be	removed	dynamically	or	at	memory	reset.	Static	buffers	can	be	reserved	memory	areas	
or	 buffers	 that	 are	 allocated	 for	 special	 purposes	 (e.g.	 circular	 buffers	 for	 sensor	 data).	Dynamic	
buffers	 can	 be	 allocated	 and	 deallocated	 on‐the‐fly	 within	 the	memory	 space	 or	 within	 another	
buffer	space.	

Note!	Memory	leaks	could	appear	if	the	dynamic	buffers	are	not	deallocated	during	the	simulation.	
So	the	user	should	deallocate	unused	buffers.	

The	Figure	1	below	shows	a	possible	snapshot	of	the	memory	space.	In	the	following	figure	the	@	

SNUG	2015	
	

Page	8	 Yet	Another	Memory	Manager	(YAMM)	

start_addr,	size notation	will	be	used	for	each	buffer	together	with	its	name.	

Figure	1	Memory	Map	snapshot	during	simulation	

	

Figure	 1	 shows	 that	 there	 are	 a	 number	 of	 allocated	buffers	which	 can	 be	 identified	 by	 the	 pair	
(start	address,	size)	or	equivalent	(start	address,	end	address)	which	are	unique.	The	semantic	of	a	
buffer	and	its	contents	are	given	by	the	buffer’s	type,	which	is	set	by	the	buffer	requestor	(i.e.	the	
one	who	allocated	the	buffer).	There	are	buffers	for	various	functions	of	the	SoC:	two	buffers	for	the	
boot	process,	a	number	of	buffers	for	the	sensor	data	and	a	couple	more	for	the	applications.	The	

SNUG	2015	
	

Page	9	 Yet	Another	Memory	Manager	(YAMM)	

boot‐related	 buffers	 can	 be	 allocated	 as	 static	 buffers	 since	 they	 will	 not	 change	 until	 the	 next	
reboot,	while	the	sensor‐related	buffers	and	application	buffers	can	be	allocated	dynamically	when	
the	sensors	or	applications	activate.	More	than	that	the	sensor	related	buffers	can	be	allocated	as	
sub‐buffers	of	 “sensor	buffer	container”	buffer.	 In	between	buffers	 there	are	 free	memory	spaces	
where	other	buffers	can	be	allocated.	

In	Figure	2	you	can	see	an	example	of	buffer	allocation.	

Figure	2	Example	of	buffer	allocation	

Each	buffer	allocation	will	create	a	new	divide	in	the	memory	space,	which	in	turn	can	increase	the	
memory	space	fragmentation.	Depending	on	the	allocation	mode	(e.g.	random	fit,	best	fit)	and	the	
allocation‐deallocation	ratio	the	memory	space	will	be	more	or	less	fragmented.	The	fragmentation	
can	be	a	form	of	memory	leak	since	in	highly	fragmented	memory	space	MM	might	not	be	able	to	
allocate	a	buffer,	although	there	is	free	space.	

	

4.2		Allocation	Mode	

When	doing	a	pseudo‐random	allocation	of	a	buffer	in	the	address	space	there	is	the	option	on	how	
it	should	be	allocated.	This	option	is	called	allocation	mode	and	it	has	the	following	schemes:	

 FIRST_FIT	‐	If	this	scheme	is	selected	then	the	buffer	will	be	allocated	in	the	first	free	area	
where	 it	 fits.	 In	 case	 the	 free	 area	 is	 larger	 than	 the	buffer	 size,	 the	buffer	 is	 allocated	as	
close	as	possible	to	the	start	of	the	free	area.	

 FIRST_FIT_RND	‐	This	scheme	is	similar	to	FIRST_FIT,	but	after	 the	 free	area	 is	 found,	 the	
buffer	will	be	allocated	randomly	in	it.	

 BEST_FIT	 ‐	 If	 this	 scheme	 is	 selected	 the	buffer	will	be	allocated	 in	 the	smallest	 free	area	
where	 it	 fits.	 In	 case	 the	 free	 area	 is	 larger	 than	 the	buffer	 size,	 the	buffer	 is	 allocated	as	
close	 as	 possible	 to	 the	 start	 of	 the	 free	 area.	 This	 scheme	 is	 useful	 to	 create	 continuous	
allocated	areas	in	memory	(with	as	least	as	possible	of	free	space	between	buffers).	

 BEST_FIT_RND	 ‐	 This	 scheme	 is	 similar	 to	BEST_FIT,	 but	 after	 the	 free	 area	 is	 found,	 the	
buffer	will	be	allocated	randomly	in	it.	

 RANDOM_FIT	‐	As	the	name	suggests,	 in	this	case	the	buffer	will	be	randomly	allocated	in	
any	of	the	free	areas	where	it	can	fit.	This	can	lead	to	a	high	fragmentation.	

 UNIFORM_FIT	‐	When	this	scheme	is	selected,	the	buffer	will	be	placed	in	the	middle	of	the	
largest	 free	area	 it	can	 find.	Using	this	scheme	assures	a	uniform	spread	of	buffers	across	
the	memory,	but	it	will	maximize	the	fragmentation.	

SNUG	2015	
	

Page	10	 Yet	Another	Memory	Manager	(YAMM)	

Regardless	of	the	allocation	scheme,	the	free	areas	are	searched	from	lowest	address	to	highest.	

4.3	Access	Descriptor	

An	access	descriptor	is	defined	by	a	start	address,	its	size	and	the	type	of	the	access	(e.g.	RW,	RO,	
RW,	R_W_W,	W_W_R)	and	it	is	used,	mostly,	for	identification	of	the	corresponding	buffer	within	the	
memory.	

5.	Data	types	

5.1	Defines	

YAMM_ADDR_WIDTH	

This	define	 represents	 the	width	of	 the	 address	 in	bits.	The	user	 should	 redefine	 it	 if	 the	 largest	
modeled	memory	in	the	environment	is	larger	than	4GB.	

Default	value:	“32”	

Typedefs	
typedef enum {YAMM_RD=0, YAMM_WR=1} yamm_direction_e;
typedef enum {RANDOM_FIT=0, FIRST_FIT=1, BEST_FIT=2, UNIFORM_FIT=3}
yamm_allocation_mode_e;
typedef bit[`YAMM_ADDR_WIDTH-1:0] yamm_addr_width;
typedef bit[`YAMM_ADDR_WIDTH:0] yamm_size_width;

5.2	Classes	
The	 classes	 in	 yamm	 package	 do	 not	 inherit	 from	 uvm_object	 of	 UVM.	 The	 reason	 for	 this	 is	 to	
improve	performance	when	creating	new	objects:	UVM	factory	can	add	a	big	overhead	when	object	
is	created.	

yamm_buffer	

Table	1	Yamm_buffer	public	fields	

Name	 Type	 Description	

start_addr	 yamm_addr_width	 Represents	 the	 start	 address	 of	 the	 buffer.	 It	must	 be	
specified	 by	 user	 only	 if	 buffer	 is	 inserted	 manually	
with	insert()	function.	

size	 yamm_size_width		 Represents	the	size	of	the	buffer	in	memory.	It	must	be	
specified	 by	 user	 when	 doing	 an	 insert()	 or	
allocate()	operation.	

granularity	 int	unsigned	 The	 size	 of	 the	 allocated	 buffer	 will	 be	 a	 multiple	 of	
resolution.	For	example,	 if	 resolution	 is	4	and	request	
size	is	7	a	buffer	of	8	bytes	will	be	allocated	instead	of	
7.	 allocate()	 function	 updates	 the	 final	 size	 field	

SNUG	2015	
	

Page	11	 Yet	Another	Memory	Manager	(YAMM)	

as		size + size % resolution.	

Default	value:	1.	

start_addr_alignment	 int	unsigned	 This	field	is	used	at	allocation	to	align	the	start	address.	
For	example,	if	alignment	is	4	the	start	address	will	be	
aligned	to	a	multiple	of	4	bytes.	allocate()	function	
solves	 the	 equation	 start_addr %
start_addr_alignment = 0.	

Default	value:	1.	

disable_warnings	 bit	 If	set	to	1	it	will	disable	all	warnings	caused	by	various	
inconsistencies.	

Default	value:	0.	

	

Table	2	Yamm_buffer	public	functions	

Name	 Description	

allocate()	 See	chapter	6.1.1	

allocate_by_size()	 See	chapter	6.1.2	

deallocate()	 See	chapter	6.1.3	

deallocate_by_addr()	 See	chapter	6.1.4	

insert()	 See	chapter	6.1.5	

insert_access()	 See	chapter	6.1.6	

get_all_buffers_by_type()	 See	chapter	6.2.1	

get_buffer()	 See	chapter	6.2.2	

get_buffers_by_access()	 See	chapter	6.2.3	

get_buffers_in_range()	 See	chapter	6.2.4	

check_address_space_consistency()	 See	chapter	6.5.4	

SNUG	2015	
	

Page	12	 Yet	Another	Memory	Manager	(YAMM)	

end_addr()	 See	chapter	6.5.2	

access_overlaps()	 See	chapter	6.5.3	

get_contents()	 See	chapter	6.3.1	

generate_contents()	 See	chapter	6.3.3	

compare_contents()	 See	chapter	6.3.4	

read_from_file()	 See	chapter	6.3.5	

write_to_file()	 See	chapter	6.3.6	

sprint_buffer()	 See	chapter	6.4.1	

write_memory_map_to_file()	 See	chapter	6.4.2	

get_fragmentation()	 See	chapter	6.4.3	

get_usage_statistics()	 See	chapter	6.4.4	

	

yamm	

This	is	the	topmost	class	in	the	hierarchy.	It	inherits	from	yamm_buffer	and	implements	specific	
functionality	required	for	top	level.	

	

Table	3	Yamm	public	functions	

Name	 Description	

allocate_static_buffer()	 See	chapter	7.1.1	

get_static_buffers()	 See	chapter	7.1.4	

reset()	 See	chapter	7.1.3	

build()	 See	chapter	7.1.2	

	

SNUG	2015	
	

Page	13	 Yet	Another	Memory	Manager	(YAMM)	

yamm_access	

This	class	models	a	basic	access.	

Table	4	Yamm_access	public	fields	

Name	 Type	 Description	

start_addr yamm_addr_width Represents the start address of the access.

size yamm_size_width Represents the length in bytes of the access.

direction yamm_direction_e Represents the direction. Not used at the moment!

	

6.	Buffer	API	

6.1	Buffer	modifiers	

The	API	functions	which	are	used	to	modify	the	memory	are	listed	below.	

Note:	The	build()	function	of	yamm	has	to	be	called	before	any	modification	to	the	memory.	

function	bit	allocate(yamm_buffer	buffer,	yamm_allocation_mode_e	allocation_mode	=	
RANDOM_FIT)	

This	 function	 tries	 to	 allocate	 the	 buffer	 in	 the	 memory,	 according	 to	 the	
yamm_allocation_mode_e.		

The	buffer	argument	handle	is	required	to	contain	a	valid	size	(bigger	than	zero).		

It	returns	1	if	the	buffer	was	successfully	allocated.	It	returns	0	if	there	is	no	free	space	for	the	
buffer	to	be	allocated.	On	successful	allocation,	the	buffer	handle	is	updated	with	additional	
information:	start_addr,	end_addr.	

function	yamm_buffer	allocate_by_size(yamm_addr_width	size,	
yamm_allocation_mode_eallocation_mode	=	RANDOM_FIT)	

This	 function	 tries	 to	 allocate	 a	 buffer	with	 the	 specified	size	 in	 the	memory,	 according	 to	
yamm_allocation_mode_e.	

It	returns	the	buffer	handle	if	successful	or	a	null	handle	otherwise.	

function	bit	deallocate(yamm_buffer	buffer,	bit	recursive	=	1)	

This	function	tries	to	deallocate	a	buffer	allocated	in	the	memory.	

It	returns	1	if	successful.	It	returns	0	if	the	specified	buffer	can’t	be	found	or	is	a	static	buffer.		It	
also	returns	0	if	‘recursive’	bit	is	not	set,	and	it	contains	allocated	buffers.	

function	bit	deallocate_by_addr(yamm_addr_width	addr)	

This	 function	 tries	 to	 deallocate	 from	 the	 memory	 the	 buffer	 which	 contains	 the	 specified	
address.	

It	returns	1	if	successful.	It	returns	0	if	the	specified	buffer	can’t	be	found	or	is	a	static	buffer.	A	

SNUG	2015	
	

Page	14	 Yet	Another	Memory	Manager	(YAMM)	

warning	is	given	if	the	buffer	contains	other	buffers	inside.	

function	bit	insert(yamm_buffer	buffer)	

This	function	tries	to	insert	a	buffer	in	the	memory	with	the	specified	start_addr	and	size.		

It	returns	1	if	the	operation	is	successful	or	0	if	the	buffer	would	collide	with	another	buffer	in	
the	memory.	

The	 function	 makes	 use	 of	 the	 field	 size	 and	 the	 start_addr	 contained	 in	 the	 specified	
buffer.	

function	yamm_buffer	insert_access(yamm_access	access)	

Similar	to	insert(),	this	function	will	try	to	insert	a	buffer	at	a	specified	address	in	memory,	
but	it	takes	an	access	as	an	argument	instead	of	a	buffer.	

It	returns	the	allocated	buffer	handle	if	the	operation	is	successful	or	a	null	handle	otherwise.	

6.2	Buffer	searching	

In	 this	 chapter	 are	 presented	 the	 API	 functions	 that	 provide	 the	 capability	 of	 searching	 and	
retrieving	specific	buffers	according	to	various	criteria.		

function	yamm_buffer[$]	get_all_buffers_by_type(string	type_name)	

Function	 returns	 a	 queue	 with	 all	 buffers	 of	 a	 certain	 kind.	 Because	 SystemVerilog	 doesn’t	
support	 type	 checking,	 the	 search	 will	 be	 done	 according	 to	 the	 name	 given	 using	
set_name().	

	

function	yamm_buffer	get_buffer(yamm_addr_width	addr)	

Search	for	the	buffer	located	at	the	specified	address.	

Returns	 the	 buffer	 which	 contains	 the	 specified	 address.	 If	 no	 buffer	 exists	 at	 the	 specified	
address	it	will	return	a	null	handle.	

	

function	yamm_buffer[$]	get_buffers_by_access(yamm_access	access)	

Search	for	all	buffers	that	span	in	the	address	range	specified	by access.	The	address	range	is	
computed	using	start_addr	and	size	fields	of	yamm_access.	

It	returns	a	queue	of	buffers.	If	no	buffers	are	found,	it	will	return	an	empty	queue.	

	

function	yamm_buffer[$]	get_buffers_in_range(yamm_addr_width	start_addr,	
end_addr)	

Search	for	all	buffers	that	span	in	the	address	space	defined	by	start_addr	and	end_addr.	

Returns	a	queue	of	buffers.	 If	end_addr	 is	 less	than	start_addr	or	no	buffers	are	 found	it	
will	return	an	empty	queue.	

	

SNUG	2015	
	

Page	15	 Yet	Another	Memory	Manager	(YAMM)	

6.3	Buffer	Contents	API	

function	byte[]	get_contents()	

This	 function	 returns	 the	 data	 stored	 in	 the	 buffer.	 If	 no	 data	 was	 previously	 stored	 with	
set_contents()	it	will	do	a	call	to	generate_contents()	to	get	data.	

	

function	void	set_contents(ref	byte[]	data)	

Store	custom	data	 in	 the	buffer.	 If	 the	size	of	 the	data	array	set	doesn’t	match	 the	size	of	 the	
buffer,	a	warning	will	be	triggered.	This	warning	can	be	turned	off.	

	

virtual	function	void	generate_contents()	

Hook	 function	which	 the	user	can	extend	 to	 implement	a	custom	generation	rule	 for	data.	By	
default	it	generates	pure	random	data	which	is	then	stored	with	set_contents().	Function	
can	be	overwritten	by	user	for	custom	comparison.	

	

virtual	function	bit	compare_contents(ref	byte[]	cmp)	

Compare	cmp	data	with	data	stored	inside	the	buffer.	Function	can	be	overwritten	by	user	for	
custom	comparison.	

	

virtual	task	read_from_file(string	file_name)	

Load	the	data	contents	from	a	file.	Function	uses	standard	$readmemh	call.	The	contents	of	the	
file	are	saved	in	the	current	buffer	by	calling	set_contents().	

$error()	is	called	if	file	can’t	be	read.	

Function	can	be	overwritten	by	user	to	load	a	custom	formatted	file.	

	

virtual	function	bit	write_to_file(string	file_name)	

Save	the	current	data	contents	to	disk.	Function	uses	standard	$writememh	call.	

$error()	is	called	if	file	can’t	be	written	to	disk.	

Function	can	be	overwritten	by	user	to	write	a	file	with	custom	formatting.	

6.4	Debug	functions	

function	string	sprint_buffer(bit	recursive=0)	

Return	the	structured	memory	map	of	the	current	buffer	as	a	string.	If	recursive	flag	is	set	to	1	
then	it	will	return	the	maps	for	all	buffers	in	it	as	well.	

	

function	bit	write_memory_map_to_file(bit	recursive=0)	

This	 function	behaves	the	same	as	sprintf_buffer(),	but	 it	will	write	the	contents	to	 file	
instead.	 The	 file	 name	 follows	 the	 syntax	

SNUG	2015	
	

Page	16	 Yet	Another	Memory	Manager	(YAMM)	

yamm_dump_<memory_name>_<start_addr_hex>_<end_addr_hex>_<unique_4_sy
mbols_key>.txt	

	

function	int	get_fragmentation()	

Return	the	percentage	of	free	buffers	out	of	the	total	number	of	buffers.	

	

function	int	get_usage_statistics()	

Return	the	percentage	of	used	memory	out	of	the	total	memory	size.	

6.5	Other	buffer	utilities	

Remaining	API	functions	are	grouped	in	this	category.	

function	void	set_name(string	name)	

Provide	 an	 optional	 name	 tag	 to	 the	 buffer.	 This	 name	 is	 can	 later	 be	 used	 by	 function	
get_all_buffers_by_type().	

function	yamm_addr_width	end_addr()	

Return	 the	 end	 address	 of	 the	 buffer.	 It	 is	 computed	 by	 memory	manager	 when	 a	 buffer	 is	
allocated.	

	

function	bit	access_overlaps(yamm_access)	

Return	1	if	access	overlaps,	at	least	partially,	any	allocated	buffer	within.	

	

function	void	check_address_space_consistency()	

This	 function	 is	 used	 to	 do	 a	 self‐check	 on	 the	 memory	 model	 to	 see	 if	 all	 the	 buffers	 are	
correctly	allocated	by	 the	model.	 It	 is	used	only	 for	debug	purposes.	 It	will	 trigger	an	error	
message	if	any	inconsistency	is	found.	

7.	Yamm	API	
function	bit	allocate_static_buffer(yamm_buffer	buffer)	

Similar	to	insert(),	but	it	tries	to	insert	as	a	static	buffer.	

It	returns	1	if	operation	is	successful	or	0	if	the	buffer	would	collide	with	another	buffer	in	the	
memory.	

Note:	 This	 function	 can	 be	 called	 only	 in	 the	 beginning,	 before	 build() is	 called	 (before	
memory	initialization)	

function	void	build(string	name,	yamm_size_width	size)	

This	function	must	be	called	just	once	before	any	other	calls.	If	it’s	called	more	than	once	it	will	
trigger	an	error.	

It	is	used	to	set	the	name	of	the	memory	and	its	size	in	bytes.	It	will	also	do	a	call	to	reset().	

SNUG	2015	
	

Page	17	 Yet	Another	Memory	Manager	(YAMM)	

function	void	reset()	

When	this	function	is	called	it	will	(re)construct	the	memory	manager,	thus	clearing	it.	

function	yamm_buffer[$]	get_static_buffers()	

Search	and	return	all	static	buffers.	

Return	a	queue	of	buffers.	It	will	return	an	empty	queue	if	no	static	buffers	are	defined.	

	

8.	Management	Algorithm	Implementation	

8.1	Memory	Map	Structure	

The	 memory	 map	 handles	 address	 spaces	 as	 buffers.	 After	 initialization	 the	 memory	 map	 will	
contain	a	single	free	buffer	covering	the	whole	address	space.	Allocation	and	insertion	operations	
fragment	 the	 initial	 address	 space	 into	more	 segments,	 each	 one	 being	 represented	 by	 a	 buffer	
within	the	initial	address	space.	In	the	following	figures	the	@start_addr, end_addr	notation	
will	be	used	(not	to	be	confused	with	the	notation	in	the	4th	chapter).	All	buffers	in	a	memory	map	
are	chained	in	a	double	linked	list	as	picture	below	illustrates:	

	

	
Figure	3.	Example	of	a	linked	memory	

	

Buffers	 allow	 allocation	 of	 sub‐buffers	 on	multiple	 layers.	 The	 linking	 scheme	 is	 similar,	 but	 the	
lower	layer	double	linked	lists	are	not	connected	to	the	upper	layers	linked	lists.	The	figure	below	
illustrates	the	allocation	of	buffers	in	multiple	layers.	

SNUG	2015	
	

Page	18	 Yet	Another	Memory	Manager	(YAMM)	

	
Figure	4.	Example	of	a	buffer	list	inside	a	buffer	

In	order	to	speed	up	the	search	for	free	buffers	(e.g.	for	the	allocation	of	new	buffers)	a	secondary	
linked	list	is	used	to	chain	only	the	free	buffers.		

	
Figure	5.	Example	of	a	free	buffers	list	

8.2	Recursivity	

Using	 a	 double	 linked	 list	 as	 a	 structure	 has	 a	 downside:	 most	 of	 the	 buffer	 operations	 (e.g.	
allocation,	insertion,	deallocation)	require	a	search	operation	which	means	the	complexity	of	those	
operations	is	O(n),	n	being	the	number	of	buffers	in	the	list.	

There	are	a	couple	of	mechanisms	that	improve	the	search	efficiency:	

 separate	linking	of	free	buffers	improves	allocation/insertion	of	buffers	
 ability	to	add/remove	buffers	in	multiple	layers	

The	address	space	is	by	its	nature	is	fragmented	in	pieces	belonging	to	different	threads,	processes	

SNUG	2015	
	

Page	19	 Yet	Another	Memory	Manager	(YAMM)	

etc.	 which	 the	 algorithm	 takes	 advantage	 of.	 Using	 buffers	 to	 store	 other	 buffers	 the	 user	 can	
decrease	the	number	of	nodes	in	each	list	which	can	improve	the	search	efficiency.	This	idea	also	
goes	hand	in	hand	with	defining	different	levels	of	access	to	memory.		

8.3	Transparency	and	usability	

YAMM	grants	the	user	absolute	control	over	how	the	buffers	are	created	and	where	they	are	stored.	
YAMM	 also	 provides	 a	 series	 of	 useful	 functions	 destined	 to	 speed	 up	 usage	 (e.g.	
allocate_by_size(),	insert_access(),	deallocate_by_address()).	

More	details	regarding	the	YAMM	API	can	be	found	in	Chapter5.	Data	Types.	

8.4	Allocation	

Allocation	requires	two	parameters:	size	and	allocation	mode.	YAMM	uses	 the	allocation	mode	to	
identify	a	free	buffer	in	which	the	allocation	is	going	to	take	place.	Thus	the	allocation	mode	impacts	
the	way	the	address	space	is	fragmented.	See	below:	

	
Figure	6.	Example	of	an	allocation	

For	a	successful	allocation	the	allocated	size	must	be	smaller	or	equal	to	the	address	space	size	and	
a	free	buffer	can	hold	it	exists.	

Buffer	allocation	works	by	creating	an	iterator	that	searches	the	memory	looking	for	a	suitable	spot	
taking	in	account	the	buffer	that	needs	to	be	allocated	and	the	allocation	mode.	Once	a	suitable	spot	
is	found	the	buffer	is	allocated	by	doing	splitting	the	free	buffer	existing	at	that	address	range	to	fit	
the	new	buffer	in.	

SNUG	2015	
	

Page	20	 Yet	Another	Memory	Manager	(YAMM)	

8.5	Deallocation	

Deallocation	can	be	done	for	a	buffer	or	an	address	space,	depending	on	which	one	is	available	at	
the	time	of	deallocation.	

A	buffer	is	deallocated	by	replacing	it	with	a	free	buffer	and,	eventually,	merge	it	with	the	adjacent	
free	buffers.	Deallocating	a	buffer	means	deleting	any	references	to	the	buffers	inside	it.	

	
Figure	7.	Example	of	a	deallocation	

To	have	a	successful	deallocation	you	have	to	specify	a	valid	occupied	buffer	or	a	valid	address	that	
belongs	to	an	occupied	buffer.	

8.6	Insertion	

The	user	can	insert	buffers	by	providing	a	buffer	or	an	access	with	a	defined	start	address	and	size.	
This	way	the	user	has	control	over	the	point	of	insertion,	which	in	turn	allows	for	a	more	flexible	
address	space	partitioning.	

The	insert	method	will	search	for	the	free	buffer	at	the	specified	location	and	it	will	 try	to	do	the	
insertion.	Only	if	there	is	sufficient	free	space	the	insertion	can	be	successful.	

	
Figure	8.	Example	of	an	insertion	

SNUG	2015	
	

Page	21	 Yet	Another	Memory	Manager	(YAMM)	

The	 conditions	 for	 a	 successful	 insertion	 are:	 a)	 provide	 a	 valid	 (start	 address,	 size)	 pair	 and	 b)	
there	being	a	free	buffer	that	can	include	the	space	[start	address,	start	address	+	size	‐1].	

9.	Usage	Examples	
Depending	on	the	verification	target	(i.e.	DUT)	there	are	three	setups	that	can	make	use	of	YAMM:	

‐ RAM‐as‐DUT:	YAMM	is	used	by	the	VIP	that	implements	RAM	client	
‐ RAM_Client‐as‐DUT:	YAMM	is	used	by	the	VIP	that	implements	the	RAM	agent	
‐ RAM_and_Client‐as‐DUT:	YAMM	is	used	by	the	VE	to	provide	memory	management	support	

The	following	examples	highlight	possible	uses	of	yamm	with	these	setups.	

9.1	YAMM	Instantiation	

The	first	step	towards	using	YAMM	is	to	instantiate	it	as	the	code	below	illustrates:	

	
yamm new_memory;
yamm_size_width memory_size = 1024*1024*1024;
new_memory = new;
new_memory.build(“memory_name”, memory_size);
// Now you can allocate static buffers. The memory was created but
buffers
// can't be allocated yet. After reset(), normal buffers can be
allocated and static
// buffers can't.
new_memory.reset();

	

9.2	Basic	Accesses	

The	most	basic	case	is	to	use	YAMM	to	provide	buffers	which	can	be	used	by	sequences	or	a	TLM	
model	to	create	memory	accesses.	

Access	non‐overlapping	buffers	

A	 scenario	where	 a	memory	manager	 is	 needed	 is	when	 there	 are	multiple	 clients	 accessing	 the	
same	 memory	 and	 one	 might	 need	 to	 avoid	 memory	 access	 collision	 (e.g.	 writing	 to	 the	 same	
memory	area,	reading	while	other	client	is	writing).	This	can	be	achieved	as	follows:	

	
yamm_buffer new_buffer = new;
new_buffer.size = 256;
new_memory.allocate(new_buffer, allocation_mode);
OR
yamm_buffer new_buffer = new;
new_buffer = new_memory.allocate_by_size(256, allocation_mode);

	

Access	overlapping	buffers	

There	are	cases	when	one	would	like	to	access	the	same	buffer	multiple	times	(e.g.	the	output	buffer	
of	an	operation	is	the	input	buffer	of	another,	operations	reuse	buffers,	circular	buffers	etc.)	or	to	
create	accesses	within	the	same	memory	buffer	(e.g.	in	order	to	verify	memory	contention	handling,	

SNUG	2015	
	

Page	22	 Yet	Another	Memory	Manager	(YAMM)	

memory	access	arbitration).	This	can	be	achieved	by	reusing	an	existing	buffer	as	follows:	

yamm_buffer inside_buffer
inside_buffer.size = 128;
new_buffer.allocate(inside_buffer, allocation_mode);
// This will generate a buffer of the required size inside an already
existing buffer
// Note: The buffer does not contain any references before first
allocation!

	

9.3	Deterministic	Responses	

In	case	of	a	RAM‐as‐DUT	setup,	the	VIP	might	be	required	to	provide	deterministic	responses	(i.e.	
respond	with	 the	 same	data	 for	 all	 reads),	 eventually	with	 a	 computed	data.	 VE	 that	 use	 loosely	
timed	references	will	need	to	support	deterministic	responses.	An	example	for	this	situation	is	a	VE	
that	uses	a	TLM	model	as	a	reference,	especially	if	the	TLM	model	is	an	LT/AT	not‐cycle	accurate	
model.		

YAMM	allows	definition	of	buffers	that	can	hold	data	(i.e.	a	list	of	bytes).	

	
 [inside_buffer.set_contents(user_data_byte_array);]
inside_buffer.get_contents();
// If get_contents() is used without prior usage of set_contents
// generate_contents will be used to get random data, store it in the
// buffer and then return it to the user

9.4	Configure	Memory	Resources	

Complex	 DUTs	 might	 require	 a	 set	 of	 memory	 buffers	 in	 order	 to	 achieve	 their	 goals.	 DUT’s	
operations	can	require	configuration	of	a	pointer	tables	at	power‐up	time	or	request	buffers	on‐the‐
fly	for	the	purpose	of	writing	or	reading	data;	the	buffer’s	contents	can	be	randomly	generated	or	
provided	by	the	user.	

Static	Buffer	Allocation	

For	example	if	a	DUT	requires	128	buffers	of	4	different	sizes	to	be	configured	during	initialization	
sequence,	 before	 data	 traffic	 starts.	 YAMM	 can	 be	 used	 to	 generate	 the	 required	 buffers	 in	 a	
contiguous	address	space	or	at	random	positions	in	the	address	space.	

	
yamm memory;
yamm_buffer new_static_buffer;
int number_of buffers = 128;
yamm_size_width [3:0]size_of_buffer = [];
yamm_addr_width crt_start_addr = 0;
int crt_size = 0;
memory = new;
memory.build(“memory_name”, 1024*1024*50);
while(number_of_buffers--)
begin

SNUG	2015	
	

Page	23	 Yet	Another	Memory	Manager	(YAMM)	

new_static_buffer = new;
new_static_buffer.size = size_of_buffer[i];
new_static_buffer.start_addr = crt_start_addr;
memory.allocate_static_buffer(new_static_buffer);
crt_start_addr = crt_start_addr + new_static_buffer.size;
if(number_of_buffers % 32 == 0)
crt_size++;
end

	

Dynamic	Buffer	Allocation	

Another	example	 is	 the	 case	of	 a	DUT	 that	process	commands	which	use	an	 input	and	an	output	
buffer.	The	commands	are	generated	by	a	sequence	which	calls	YAMM	API	to	provide	the	required	
buffer.	A	possible	solution	is:	
class user_sequenece extends uvm_sequence;
 int unsigned access_size;
 ...
 task body();
 yamm_buffer buffer =
p_sequencer.user_memory.allocate_by_size(access_size);
 `uvm_do_with(user_item, {
 address == buffer.start_addr;
 size == buffer.size;//or access_size
 data == buffer.get_contents();
 })
 endtask
endclass

9.5	Memory	Snapshot	

YAMM	can	help	with	DUT	memory	initialization:	

‐ allocate	buffers	
‐ fill	 the	allocated	buffers	with	data	 (e.g.	 from	test	vector	 files,	 structured	data	provided	by	

the	VE,	random	data)	
‐ write	the	contents	file	which	can	be	loaded	in	memory	with	$writememh	
‐ provides	initialized	buffers	to	the	VE	for	further	use	

	
//allocate a buffer with size 256 in memory map “my_memory” with default policy of “RANDOM_FIT”

yamm_buffer new_buffer = my_memory.allocate_by_size(256);
//generate random contents for this buffer

new_buffer.generate_contents();
//initialize other locations in memory

...
//afterwards save the contents of the memory manager to file

my_memory.write_to_file();

9.6	Check	Accesses	

In	 order	 to	 assure	 correct	 functioning	 of	 the	 DUT	 one	 should	 check	 the	 memory	 accesses	
correctness:	

‐ DUT’s	write	accesses	should	be	verified	against	a	set	of	reference‐generated	write	accesses	

SNUG	2015	
	

Page	24	 Yet	Another	Memory	Manager	(YAMM)	

(e.g.	you	need	to	check	address,	size,	written	data	or	payload)	
‐ DUT’s	read	accesses	should	be	verified	against	a	set	of	 reference‐generated	read	accesses	

(e.g.	you	need	to	check	address	and	size)	
‐ Memory‐generated	read	response	should	be	provided	also	 to	 the	reference	 in	order	 to	be	

able	to	check	read	response	processing	results	

YAMM	simplifies	the	access	 identification	and	correlation	with	a	DUT	operation	given	that	YAMM	
provides	 buffers	with	 a	well‐defined	 address,	 size	 and,	 eventually,	 payload.	 For	 non‐overlapping	
buffers,	the	accesses	are	uniquely	identified	by	address	and	size.	Overlapping	accesses	can	still	be	
identified	 by	 address	 and	 size,	 but	 additional	 information	 might	 be	 required	 (e.g.	 information	
contained	in	the	payload).	

Also,	YAMM	can	be	used	as	a	reference	since	it	holds	a	list	of	allocated	buffers.	
class user_scoreboard;
 yamm user_memory;
 ...
 //function checks if the current access is done to a previously allocated address
 function void check_access(user_item item);
 if(user_memory.get_buffer(item.addr) == null)
 `uvm_error(get_name(), "Access detected to a non-allocated
memory address!")
 endfunction
endclass

10.	Futher	Work	
In	 this	 first	 implementation	 of	 YAMM	 the	 focus	was	 on	 defining	 a	 robust	API	 to	 satisfy	memory	
allocation	needs	in	a	DUT	verification	context.	The	focus	was	less	on	memory	contents	features.	

For	future	improvements,	the	following	features	are	identified:	

 improve	search	performance	when	using	a	large	number	of	buffers	from	O(n)	to	O(log	n);	
 enhance	API	with	more	buffer	data	content	control;	
 enhance	API	with	more	access	control	and	checking	(eg.	implementation	of	RO	buffers);	
 provide	an	option	to	integrate	with	uvm_pkg.	

11.	Terminology,	Abbreviations	
Abbreviation,	Term	

YAMM,	Yet	Another	Memory	Manager	

UVM,	Universal	Verification	Methodology	

RAM,	Random‐access	Memory	

ROM,	Read‐only	Memory	

MM,	Memory	Manager	

VIP,	Verification	IP	

TLM,	Transaction‐level	Modeling	

LT/AT,	Loosely‐timed/Approximately‐timed	

API,	Application	Programming	Interface	

SNUG	2015	
	

Page	25	 Yet	Another	Memory	Manager	(YAMM)	

DUT,	Device‐under‐Test	 														 	

VE,	Verification	Environment	

RW,	Read	Write	

RO,	Read	Only	

12.	References	
[1] Systemverilog	1800‐2012	IEEE	Standard	for	System	Verilog‐Unified	Hardware	Design,	Specification,	and	

Verification	Language	

[2] Accellera	UVM	

[3] Data	buffers	

	 	

