

SystemVerilog Assertions Verification with
SVAUnit

Ionuţ Ciocîrlan
Andra Socianu

AMIQ Consulting
Bucharest, Romania

www.amiq.com

ABSTRACT

SystemVerilog Assertions are one of the central pieces in functional verification for
protocol checking or validation of specific functions. In order to benefit from assertion
advantages (fast, synthesizable, non-intrusive, coverable), one must be sure that
assertions work as specified.
Verification engineers need to make sure that SVAs pass in normal conditions and
fail under error conditions. This implies some tedious work to create the scenario that
properly triggers an assertion. Besides the stimuli generation, one should also
implement checks to ensure that the assertion under test is triggered at the right
time. All this preferably without contaminating the assertions with the validation code.
SVAUnit is a SystemVerilog library that addresses this by decoupling assertion
validation code from assertion definition code, simplifying the generation of stimuli
and providing the ability to reuse scenarios. It also includes a self-checking
mechanism and automatic test status report.

CDNLive EMEA 2015 2 SVA Verification with SVAUnit

Table of Contents

1. Introduction .. 4

2. SVAs and accompanying challenges ... 4

3. Introducing SVAUnit ... 5

4. The big picture .. 6

5. Building blocks ... 7

5.1. SVAUnit Testbench .. 7

5.2. SVAUnit Test .. 8

5.2.1.Pre_test() method ... 10

5.2.2.Test() method ... 10

5.3. SVAUnit Test Suite ... 13

6. Batteries included ... 14

6.1. APIs for controlling SVAs ... 14

6.2. APIs for checking SVAs ... 15

6.3. APIs for printing reports .. 16

7. SVAUnit flow .. 17

8. Reaping the rewards .. 18

9. Conclusions .. 21

10. Availability .. 21

11. References ... 22

CDNLive EMEA 2015 3 SVA Verification with SVAUnit

Table of Figures

Figure 1. Simple SVA example ... 4

Figure 2. SVAUnit components ... 6

Figure 3. SVA Scenario ... 11

Figure 4. SVAUnit flow .. 17

Figure 5. SVAUnit tree report .. 18

Figure 6. SVAUnit Test status report ... 18

Figure 7. SVAUnit report on SVAs .. 19

Figure 8. SVAUnit check status report .. 19

Figure 9. SVAUnit report on checks used ... 20

Figure 10 Example of SVAUnit error ... 20

Figure 11. Example of SVAUnit error for a test with parameters 20

Table of Code examples

Code example 1. SVAUnit Testbench for simple interface .. 7

Code example 2. SVAUnit Testbench for multiple parameterized interfaces 8

Code example 3. SVAUnit Test ... 9

Code example 4. SVAUnit Test with parameters .. 10

Code example 5. pre_test() method .. 10

Code example 6. SVA example .. 11

Code example 7. test() method ... 12

Code example 8. SVAUnit Test Suite .. 13

Table of Tables

Table 1. APIs for controlling SVA .. 14

Table 2. APIs for controlling the entire set of SVAs ... 15

Table 3. APIs for checking SVA state.. 16

Table 4. APIs for printing reports ... 16

CDNLive EMEA 2015 4 SVA Verification with SVAUnit

1. Introduction
The paper begins with a short description of SystemVerilog Assertions and their

role in the verification world. It will also address some of the challenges encountered
in validating SystemVerilog Assertions.

This will set the stage for presenting the capabilities of SVAUnit, what it is and
what are the main features that can help the user improve its efficiency when
working with SVAs.

The paper also contains an overview of the SVAUnit package and its main building
blocks. The architectural details of each component and their role inside the SVAUnit
package will also be presented.

Knowing how the SVAUnit framework is built, the paper offers a description of
each control method available.

Last, but not least, the paper provides a step by step example for using the
SVAUnit package in order to reach the goal of having complete and verified SVAs
with minimum effort.

2. SVAs and accompanying challenges
SystemVerilog Assertions (SVAs) are a fundamental part of verifying that the

design-under-test complies with a given protocol or validating its specific functions.
Simply put, an assertion is a check against the specification of a design that we want
to make sure it never violates.

Based on its purpose, an SVA can vary from a simple statement that a certain
property must be true, to complex expressions meant to check that the intent of the
design is met over simulation time.

Figure 1. Simple SVA example

There is a saying which seems valid for the functional verification field as well: “be

careful of the environment you choose, for it will shape you”. Assertions can increase
the value of the verification done when they function as intended but can also work
against it if left unverified (e.g. issues in the checking logic usually hide the ones in
the design).

The question we try to answer is how to assure that an SVA works as specified.
The most common approach would be to start developing a scenario in which the

SVA is triggered, but that is not enough. Making sure the SVA triggers as expected
and at the correct moment requires additional code that will most likely be non-
reusable and can hide issues or omit scenarios.

CDNLive EMEA 2015 5 SVA Verification with SVAUnit

There is also an alternative to validate the SVA by running it against a proven
design, but that seems a luxury not everybody can enjoy and still does not cover all
the possible issues. For each of the approaches presented above, tedious work has
to be invested in checking the correctness of each SVA.

A more standardized solution is needed, one that can do all the above but still be
reusable from project to project and at the same time ready to use out of the box.
This was the driving force for developing SVAUnit, a package for verifying
SystemVerilog Assertions that will be addressed in the following chapters.

3. Introducing SVAUnit
SVAUnit combines the unit testing paradigm of the software world with the

powerful feature of assertions from hardware verification languages like
SystemVerilog. SVAUnit represents a structured framework for unit testing that
allows the user to decouple the assertion validation code from the definition code.

It provides the ability to tackle verification completeness head on in the early steps
of the code development process. Assertions can be validated as they are written
without having to resort to time consuming and non-reusable checking logic.

SVAUnit is an UVM compliant package written in SystemVerilog. It provides a
base class to develop unit tests and suites in order to prove that assertions execute
as they are intended.

SVAUnit appeals to modularity by providing the means to encapsulate each SVA
testing scenario inside an unit test.

Increasingly complex environments require reusability. SVAUnit provides the
ability to reuse scenarios and extend the SVA verification to multiple tests in the
same simulation through SVAUnit test suites.

All the functionality can be easily controlled and supervised using a simple API.
Although the SVAUnit package can be smoothly integrated with an existing

verification environment, the only real requirement is an interface containing the
SVAs to be verified.

CDNLive EMEA 2015 6 SVA Verification with SVAUnit

4. The big picture

Figure 2. SVAUnit components

The main building blocks of the SVAUnit package are:
 The SVAUnit Testbench instantiates the interface containing the SVA and

represents the starting point for an SVAUnit Test or SVAUnit Test Suite.
 The SVAUnit Test represents a scenario used to check an SVA. It can be run

standalone and/or inside a test suite.
 The SVAUnit Test Suite represents a collection of SVAUnit Tests and/or

Test Suites used to verify a set of SVAs.

CDNLive EMEA 2015 7 SVA Verification with SVAUnit

5. Building blocks
Architectural details of each building block will be presented in the following pages

as well as code examples. The SVAUnit package contains code templates enabling
the user to concentrate on test scenario rather than building the infrastructure.

5.1. SVAUnit Testbench

The SVAUnit Testbench represents a SystemVerilog module where the SVAUnit
package is used.

You can define it as a separate module and integrate in your verification
environment or you can simply upgrade your top module that has access to the SVA
interface.

The SVAUnit framework is enabled as soon as one instantiates the

`SVAUNIT_UTILS which will handle all the “heavy lifting” in a manner that is

transparent from the user’s perspective.
The interface containing the SVA must be instantiated in the SVAUnit Testbench

and a virtual interface reference must be set in the uvm_config_db in order to have

access to it later on.
Following you can find an example on how a simple SVAUnit Testbench can look

like:

module top;

 `SVAUNIT_UTILS

 reg clock;

 my_if dut_if(.clk(clock));

 initial begin

 uvm_config_db#(virtual my_if)::set(uvm_root::get(), "*",

 "VIF", dut_if);

 end

 initial begin

 run_test();

 end

 initial begin

 clock = 1'b0;

 end

 always #1 clock = ~clock;

endmodule

Code example 1. SVAUnit Testbench for simple interface

CDNLive EMEA 2015 8 SVA Verification with SVAUnit

Using parameterized interfaces or multiple interfaces at once is fully supported.
The next code example shows an SVAUnit Testbench containing several

instances of a parameterized interface.

module top;

 ...

 my_if#(100) dut_if(.clk(clock));

 initial begin

 uvm_config_db#(virtual my_if#(100))::set(uvm_root::get(),

 "*", "VIF", dut_if);

 end

 ...

endmodule

module top;

 ...

 generate

 genvar if_param;

 for(if_param = 100; if_param < 200; if_param++) begin

 my_if#(if_param) dut_if(.clk(clock));

 initial begin

 uvm_config_db#(virtual

 my_if#(.if_param(if_param)))::set(uvm_root::get(),

 "*", $sformatf("vif%0d", if_param), dut_if);

 end

 end

 endgenerate

 ...

endmodule

Code example 2. SVAUnit Testbench for multiple parameterized interfaces

5.2. SVAUnit Test

The SVAUnit Test class inherits uvm_test, which means it will benefit from UVM

base test features. The SVAUnit Test is used to describe and implement one
scenario that verifies one or more aspects of an SVA (this is a recommendation, not
a requirement).

The interface containing the SVAs under test is accessible through the

uvm_config_db since it was set from the SVAUnit Testbench.

The test class contains two important methods: pre_test() and test(). The

pre_test() method should contain the verification scenario initialization.

CDNLive EMEA 2015 9 SVA Verification with SVAUnit

The verification scenario should be defined inside the test() method. The

scenario contains the SVA stimuli generation and checking of the SVA state. An
example of an SVAUnit Test is provided below.

class ut1 extends svaunit_test;

 virtual my_if vif;

 function void build_phase(input uvm_phase phase);

 if (!uvm_config_db#(virtual my_if)::get(this, "", "vif",

vif))

 `uvm_fatal("UT1_NO_VIF_ERR", "SVA IF is not set!")

 // The test is configured to run by default

 disable_test();

 endfunction

 task pre_test();

 // Initialize signals

 endtask

 task test();

 // Create scenarios for AN_SVA

 endtask

endclass

Code example 3. SVAUnit Test

One can enable or disable a test through a call to enable_test() or

disable_test() method in the build_phase().

The SVAUnit package offers the possibility to create parameterized tests by using

`SVAUNIT_TEST_WITH_PARAM_UTILS macro call inside a SVAUnit Test class.

CDNLive EMEA 2015 10 SVA Verification with SVAUnit

An example of an SVAUnit Test with parameters is provided below:

class ut2#(type if_t=int) extends svaunit_test;

 `SVAUNIT_TEST_WITH_PARAM_UTILS

 virtual if_t vif;

 function void build_phase(uvm_phase phase);

 if (!uvm_config_db#(virtual if_t)::get(this, "", "vif",

vif))

 `uvm_fatal("UT2_NO_VIF_ERR", "SVA IF is not set!")

 endfunction

 task pre_test();

 // Initialize signals

 endtask

 task test();

 // Create scenarios for AN_SVA

 endtask

endclass

Code example 4. SVAUnit Test with parameters

Each SVAUnit Test has a name that can be retrieved using the get_test_name()

method. The name will be constructed as parent_test_suite_name.test_name.

5.2.1. Pre_test() method

The pre_test() method should commonly contain the signals initializations, this

to ensure the signal values are not propagated when running multiple tests. The
method also provides a good place to enable or disable assertions through SVAUnit
package provided API.

An example of the pre_test() method can be found below:

task pre_test();

 disable_all_assertions();

 vif.sel = 1'b0;

 vif.enable = 1'b0;

 vif.ready = 1'b0;

 vif.slverr = 1'b0;

endtask

Code example 5. pre_test() method

5.2.2. Test() method

The test() method contains the scenario to verify the SVA. Stimuli are driven on

the interface signals and SVAUnit checks are used to detect if the behaviour of the
user-defined SVAs matches the expected one. For example, for an SVA described

CDNLive EMEA 2015 11 SVA Verification with SVAUnit

as „slverr signal should be 0 if no slave is selected or when transfer is not enabled or
when slave is not ready to respond“, the SVA code could look like this:

interface my_if (input clk);

 ...

 logic sel;

 logic enable;

 logic ready;

 logic slverr;

 property an_sva_property;

 @(posedge clk)

 !sel || !enable || !ready |-> !slverr;

 endproperty

 AN_SVA: assert property (an_sva_property) else

 `uvm_error("AN_SVA", "AN_SVA failed")

endinterface

Code example 6. SVA example

Signal wise the scenario will look like in the figure below, where the green arrow
means that the SVA should have succeeded and the red one that the SVA should
have failed.

Figure 3. SVA Scenario

CDNLive EMEA 2015 12 SVA Verification with SVAUnit

This scenario can be translated into the test() method as seen below:

task test();

 disable_all_assertions();

 enable_assertion("AN_SVA");

 repeat(2) @(posedge vif.clk);

 repeat(2) begin

 @(posedge vif.clk);

 fail_if_sva_not_succeeded("AN_SVA", "SVA should have

 succeeded");

 end

 // Trigger the error scenario

 vif.slverr <= 1'b1;

 repeat(2) begin

 @(posedge vif.clk);

 fail_if_sva_succeeded("AN_SVA", "SVA should have failed");

 end

 // End the error scenario

 vif.slverr <= 1'b0;

 repeat(2) begin

 @(posedge vif.clk);

 fail_if_sva_not_succeeded("AN_SVA", "SVA should have

 succeeded");

 end

 // Trigger the error scenario

 vif.slverr <= 1'b1;

 @(posedge vif.clk);

 fail_if_sva_succeeded("AN_SVA", "SVA should have failed");

 // End the error scenario

 vif.slverr <= 1'b0;

 repeat(2) begin

 @(posedge vif.clk);

 fail_if_sva_not_succeeded("AN_SVA", "SVA should have

 succeeded");

 end

endtask

Code example 7. test() method

CDNLive EMEA 2015 13 SVA Verification with SVAUnit

5.3. SVAUnit Test Suite

The SVAUnit Test Suite comes in handy when more than one SVAUnit Test are
required.

It inherits the svaunit_test class and is a run container for other test or test

suites.

Tests can be easily added inside the test suite using the add_test() method

after they are instantiated and created. They will run in the same order they were
added inside the test suite. A test can be excluded from running by disabling it

through the disable_test() method. All these actions should be done inside the

build_phase()’s body.

class uts extends svaunit_test_suite;

 ut1 unit_test1;

 ...

 ut2#(my_if#(100)) unit_test2;

 function void build_phase(input uvm_phase phase);

 unit_test1 = ut1::type_id::create("unit_test1", this);

 ...

 unit_test2 = ut2#(my_if#(100))::type_id::create("unit_test2",

this);

 add_test(unit_test1);

 ...

 add_test(unit_test2);

 unit_test2.disable_test();

 endfunction

endclass

Code example 8. SVAUnit Test Suite

CDNLive EMEA 2015 14 SVA Verification with SVAUnit

6. Batteries included
The SVAUnit packages comes equipped with APIs to control the behaviour of an

SVA, check its state or to print out reports containing results and statistics from the
SVAUnit tests or test suites. These APIs can be used both inside SVAUnit tests and

SVAUnit Test Suites. They are accessible in the test() method.

6.1. APIs for controlling SVAs

These APIs will control the status and behaviour of an SVA. They can be used to
control either a single SVA or the entire list of SVAs.

API for controlling a single SVA Description

reset_assertion(sva_name); This will set the SVA back to its initial enabled
or disabled state.

disable_assertion(sva_name); The SVA will not start. If it was already started,
it will not be finished. By default, each SVA is
enabled.

enable_assertion(sva_name); The SVA will start again if it was disabled.

kill_assertion(sva_name,

sim_time);
The SVA started at sim_time will not be

finished. The SVA will remain enabled without
being set back to its initial state.

disable_step_assertion(sva_name); Any step callback for this SVA will be not
triggered.

enable_step_assertion(sva_name); This will start triggering the step callback for
this SVA. By default step callback for all
assertions is disabled.

Table 1. APIs for controlling SVA

Assertion step represents callbacks triggered only when an event occurs; the
assertion will advance at that event.

CDNLive EMEA 2015 15 SVA Verification with SVAUnit

APIs for controlling the entire set of SVAs Description

reset_all_assertions(); Resets all assertions.

disable_all_assertions(); Disables all assertions.

enable_all_assertions(); Enables all assertions.

kill_all_assertions(sim_time); Kills all assertions started at sim_time.

disable_step_all_assertions(); Disable step for all assertions.

enable_step_all_assertions(); Enable step for all assertions.

system_reset_all_assertions(); The entire SVA system will be set back to its
initial state. The step callbacks will be
removed.

system_on_all_assertions(); The entire SVA system will be restarted after
the suspension of the system with

system_off_all_assertions().

system_off_all_assertions(); The SVA system will not start again and if any
SVA state has started, it will not be finished.

system_end_all_assertions(); SVA system will be disabled. All callbacks will
be removed.

Table 2. APIs for controlling the entire set of SVAs

6.2. APIs for checking SVAs

These APIs are used to check the SVA state and are the powerhouse of the
SVAUnit package.

The SVA state must be checked at least one clock cycle after the SVA was
triggered in order for its state to be correctly retrieved from the simulator.

APIs for checking SVA state Description

pass/fail_if_sva_does_not_exists

(sva_name, error_msg);
The test will pass/fail if the given SVA name
does not exists.

pass/fail_if_sva_enabled

(sva_name, error_msg);
The test will pass/fail if the given SVA is
enabled.

pass/fail_if_sva_succeeded

(sva_name, error_msg);
The test will pass/fail if the SVA succeeded.

pass/fail_if_sva_not_succeeded

(sva_name, error_msg);
The test will pass/fail if the SVA has failed.

pass/fail_if_sva_started_but_not_

finished(sva_name, error_msg);
The test will pass/fail if the SVA has started
but did not finished.

pass/fail_if_sva_not_started

(sva_name, error_msg);
The test will pass/fail if the SVA has not
started.

pass/fail_if_sva_finished

(sva_name, error_msg);
The test will pass/fail if the SVA has finished.

pass/fail_if_sva_not_finished

(sva_name, error_msg);
The test will pass/fail if the SVA has not
finished.

CDNLive EMEA 2015 16 SVA Verification with SVAUnit

pass/fail_if_all_sva_succeeded

(error_msg);
The test will pass/fail if all the SVAs from an
interface succeeded.

pass/fail_if(expression,

error_msg);
The test will pass/fail if the expression is true.

Table 3. APIs for checking SVA state

The fail_if_sva_does_not_exists and pass_if_sva_enabled are

always used when the other checks are used, except for the pass/fail_if check.

Furthermore, the fail_if_sva_does_not_exists check will be performed

when a control API is used for an SVA.

6.3. APIs for printing reports

The APIs for printing reports are called when a test suite or test has finished,
depending on which has been run. Failing tests or SVAs will be flagged inside the
report using an asterisk („*“).

APIs for printing reports Description

print_status(); This can be used to display the status of a test
suite or test.

print_sva(); This can be used to display how many
assertions are tested and how many are not,
along with the SVA names. It will also display
the statistics for the coverage statements
written for the SVA.

print_checks(); This can be used to display how many checks
are used and how many are not used along
with the check names.

print_sva_and_checks(); This can be used to display all SVAs along
with the checks used to test them.

print_tests(); This displays the tests that have run in the
simulation. It can be used inside a test suite.

print_tree(); This can be used to display the SVAUnit
topology created.

print_report(); This can be used to display all the above
reports.

print_sva_info(sva_name); This can be used to display information
regarding the selected SVA.

Table 4. APIs for printing reports

CDNLive EMEA 2015 17 SVA Verification with SVAUnit

7. SVAUnit flow
The first and only real requirement to use the SVAUnit framework is to have an

interface containing the SVAs that need to be validated.
The rest is just a simple matter of putting the discussed building blocks and APIs

together with the interface and one can start developing test scenarios as shown in
the SVAUnit flow diagram below.

Figure 4. SVAUnit flow

CDNLive EMEA 2015 18 SVA Verification with SVAUnit

8. Reaping the rewards
Now that one knows how to start using the SVAUnit package, it is a good time to

have a quick walkthrough on how SVAUnit’s reports are printed out.
The complete end of simulation report is structured into several layers, starting

with the SVAUnit’s topology.

Figure 5. SVAUnit tree report

The above report contains information on which tests and/or test suites make up

our main test suite. The SVAUnit topology can vary from running a simple test to
complex test suites several layers deep.

The next report will present the status of each test and/or test suite run in our
simulation.

Figure 6. SVAUnit Test status report

The test or test suite in which the SVA checks have failed will be flagged with a
wildcard in the report.

CDNLive EMEA 2015 19 SVA Verification with SVAUnit

Besides presenting the status of the simulation, the report also contains both the
SVAs that have been tested and those that have not.

Figure 7. SVAUnit report on SVAs

The report contains information on which checks have been performed on the
SVAs and their status at the end of the simulation.

Figure 8. SVAUnit check status report

CDNLive EMEA 2015 20 SVA Verification with SVAUnit

Information on which checks have been used is available in the following format:

Figure 9. SVAUnit report on checks used

Although the desired outcome of the simulation is debatable from each user‘s
perspective, an SVA that does not behave according to the specified scenario will be
detected and cause the simulation to fail with an error message as below.

Figure 10 Example of SVAUnit error

The error message will contain the name of the failing check, the enclosing test‘s
name along with its type and the name of the SVA under validation.

In case parameters are used, the error messsage will also print them out like in the
example below.

Figure 11. Example of SVAUnit error for a test with parameters

CDNLive EMEA 2015 21 SVA Verification with SVAUnit

9. Conclusions
SVAUnit is a seamlessly plug and play package that allows the user to validate

SVAs behaviour in an isolated manner.
It provides a safety net for eventual code refactoring and removes the headaches

of having to manually debug the possible issues.
By separating the checking logic of the SVA from its definition code it helps reduce

the level of possible issues introduced in the actual validation code.
Work once, reap the rewards several times. SVAUnit provides the ability to reuse

testing scenarios leaving the user free to concentrate on more complex scenarios
instead of churning away through repetitive tasks.

It can even be seen as a form of self-checking documentation on how verified
SVAs should work thus supporting code and knowledge sharing between several
users.

With an extensive library of APIs and a quick learning curve, the SVAUnit package
can speed up verification closure while at the same time increase verification quality.

10. Availability
SVAUnit is released by AMIQ Consulting as an open source project and can be

used as it is or further extended to support new features. It contains SystemVerilog
and simulator integration source code, the AMBA-APB assertion package, SVAUnit
test examples and code templates.

CDNLive EMEA 2015 22 SVA Verification with SVAUnit

11. References

[1] AMIQ Consulting Blog, www.amiq.com/consulting/blog

[2] UVM Accellera standard, http://www.accellera.org/downloads/standards/

[3] 1800-2012 - IEEE Standard for SystemVerilog - Unified Hardware Design,
Specification, and Verification Language,
http://standards.ieee.org/findstds/standard/1800-2012.html

