

Free Range VHDL
Bryan Mealy, Fabrizio Tappero

Free Range VHDL

Copyright ©2016 B. Mealy, F. Tappero

Release: 1.18

Date: 8 March 2016

Book size: 160 mm by 240 mm

Pages: approx. 190

The electronic version of this book can be downloaded free of charge from:

http://www.freerangefactory.org

The authors have taken great care in the preparation of this book, but make no ex-

pressed or implied warranty of any kind and assume no responsibility for errors or

omissions. No liability is assumed for incidental or consequential damages in connec-

tion with or arising out of the use of the information or programs contained in this book.

This book is licensed under the Creative Commons Attribution-ShareAlike Unported

License, which permits unrestricted use, distribution, adaptation and reproduction in

any medium, provided the original work is properly cited. If you build upon this work,

you may distribute the resulting work only under the same, similar or a compatible

license. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/

Feedback and Contribution

We are more than happy to consider your contribution in improving, extending or

correcting any part of this book. For any communication or feedback that you might

have about the content of this book you can contact the authors using the form at the

following address:

http://www.freerangefactory.org

Cover and Artwork by Robert Ash.

http://www.freerangefactory.org
http://creativecommons.org/licenses/by-sa/3.0/
http://www.freerangefactory.org

To everyone who helped

Table of Contents

Acknowledgments ii

Purpose of this book 1

1 Introduction To VHDL 5

1.1 Golden Rules of VHDL 8

1.2 Tools Needed for VHDL Development 8

2 VHDL Invariants 11

2.1 Case Sensitivity 11

2.2 White Space 11

2.3 Comments 12

2.4 Parentheses 12

2.5 VHDL Statements 13

2.6 if, case and loop Statements 13

2.7 Identifiers 14

2.8 Reserved Words 15

2.9 VHDL Coding Style 15

3 VHDL Design Units 17

3.1 Entity 18

3.2 VHDL Standard Libraries 22

ii

3.3 Architecture 23

3.4 Signal and Variable Assignments 23

3.5 Summary 25

3.6 Exercises 26

4 VHDL Programming Paradigm 29

4.1 Concurrent Statements 30

4.2 Signal Assignment Operator “<=” 33

4.3 Concurrent Signal Assignment Statements 34

4.4 Conditional Signal Assignment when 38

4.5 Selected Signal Assignment with select 42

4.6 Process Statement 47

4.7 Summary 47

4.8 Exercises 48

5 Standard Models in VHDL Architectures 51

5.1 Data-flow Style Architecture 52

5.2 Behavioral Style Architecture 53

5.3 Process Statement 53

5.4 Sequential Statements 55

5.4.1 Signal Assignment Statement 57

5.4.2 if Statement 57

5.4.3 case Statement 62

5.5 Caveats Regarding Sequential Statements 66

5.6 Summary 68

5.7 Exercises: Behavioral Modeling 68

6 VHDL Operators 71

6.1 Logical Operators 72

6.2 Relational Operators 72

6.3 Shift Operator 72

6.4 Other Operators 73

6.5 Concatenation Operator 74

6.6 Modulus and Remainder Operators 74

6.7 Review of Almost Everything Up to Now 75

iii

6.8 Using VHDL for Sequential Circuits 76

6.9 Simple Storage Elements Using VHDL 77

6.10 Inducing Memory: Data-flow vs. Behavioral Modeling 84

6.11 Important Points 85

6.12 Exercises: Basic Memory Elements 86

7 Finite State Machine Design Using VHDL 89

7.1 VHDL Behavioral Representation of FSMs 92

7.2 One-Hot Encoding for FSMs 101

7.3 Important Points 106

7.4 Exercises: Behavioral Modeling of FSMs 107

8 Structural Modeling In VHDL 117

8.1 VHDL Modularity with Components 119

8.2 Generic Map 127

8.3 Important Points 128

8.4 Exercises: Structural Modeling 129

9 Registers and Register Transfer Level 131

9.1 Important Points 138

9.2 Exercises: Register Transfer Level Circuits 138

10 Data Objects 141

10.1 Types of Data Objects 141

10.2 Data Object Declarations 142

10.3 Variables and Assignment Operator “:=” 143

10.4 Signals vs. Variables 143

10.5 Standard Data Types 145

10.6 User-Defined Types 145

10.7 Commonly Used Types 146

10.8 Integer Types 146

10.9 signed and unsigned Types 148

10.10 std logic Types 149

10.11 Important Points 152

iv

11 Looping Constructs 153

11.1 for and while Loops 153

11.1.1 for Loops 154

11.1.2 while Loops 156

11.1.3 Loop Control: next and exit Statements 156

12 Standard Digital Circuits in VHDL 159

12.1 RET D Flip-flop - Behavioral Model 160

12.2 FET D Flip-flop with Active-low Asynchronous Preset -

Behavioral Model 160

12.3 8-Bit Register with Load Enable - Behavioral Model 161

12.4 Synchronous Up/Down Counter - Behavioral Model 161

12.5 Shift Register with Synchronous Parallel Load - Behavioral

Model 162

12.6 8-Bit Comparator - Behavioral Model 163

12.7 BCD to 7-Segment Decoder - Data-Flow Model 163

12.8 4:1 Multiplexer - Behavioral Model 164

12.9 4:1 Multiplexer - Data-Flow Model 164

12.10 Decoder 165

Appendix A VHDL Reserved Words 167

Appendix B Standard VHDL Packages 169

B.1 IEEE Standard Libraries 171

B.2 Non-standard Libraries 172

Appendix C VHDL Reference Cards 173

Appendix D Contributors to This Book 179

Acknowledgments

The authors would like to thank Christina Jarron for her invaluable con-

tribution to proofreading this book and for her useful suggestions. Special

thanks also to Rob Ash for helping us make the cover of the book distinct-

ive with his original artwork. A massive thank you goes to Keith Knowles

for his time and effort in reviewing and editing the final draft of this book.

Finally, the authors would like to thank all the people who have provided

feedback and suggestions.

Purpose of this book

The purpose of this book is to provide students and young engineers with

a guide to help them develop the skills necessary to be able to use VHDL

for introductory and intermediate level digital design. These skills will also

give you the ability and the confidence to continue on with VHDL-based

digital design. In this way, you will also take steps toward developing

the skills required to implement more advanced digital design systems.

Although there are many books and on-line tutorials dealing with VHDL,

these sources are often troublesome for several reasons. Firstly, much of

the information regarding VHDL is either needlessly confusing or poorly

written. Material with these characteristics seems to be written from the

standpoint of someone who is either painfully intelligent or has forgotten

that their audience may be seeing the material for the first time. Secondly,

the common approach for most VHDL manuals is to introduce too many

topics and a lot of extraneous information too early. Most of this material

would best appear later in the presentation. Material presented in this

manner has a tendency to be confusing, is easily forgotten if misunderstood

or simply is never applied. The approach taken by this book is to provide

only what you need to know to quickly get up and running in VHDL.

As with all learning, once you have obtained and applied some useful

information, it is much easier to build on what you know as opposed

to continually adding information that is not directly applicable to the

2

subjects at hand.

The intent of this book is to present topics to someone familiar with

digital logic design and with some skills in algorithmic programming lan-

guages such as Java or C. The information presented here is focused on

giving a solid knowledge of the approach and function of VHDL. With a

logical and intelligent introduction to basic VHDL concepts, you should be

able to quickly and efficiently create useful VHDL code. In this way, you

will see VHDL as a valuable design, simulation and test tool rather than

another batch of throw-away technical knowledge encountered in some

forgotten class or lab.

Lastly, VHDL is an extremely powerful tool. The more you understand as

you study and work with VHDL, the more it will enhance your learning

experience independently of your particular area of interest. It is well

worth noting that VHDL and other similar hardware design languages

are used to create most of the digital integrated circuits found in the

various electronic gizmos that overwhelm our modern lives. The concept

of using software to design hardware that is controlled by software will

surely provide you with endless hours of contemplation. VHDL is a very

exciting language and mastering it will allow you to implement systems

capable of handling and processing in parallel ns-level logic events in a

comfortable software environment.

This book was written with the intention of being freely available to

everybody. The formatted electronic version of this book is available from

the Internet. Any part of this book can be copied, distributed and modified

in accordance with the conditions of its license.

DISCLAIMER: This book quickly takes you down the path toward

understanding VHDL and writing solid VHDL code. The ideas presented

herein represent the core knowledge you will need to get up and running

with VHDL. This book in no way presents a complete description of the

VHDL language. In an effort to expedite the learning process, some of

the finer details of VHDL have been omitted from this book. Anyone who

has the time and inclination should feel free to further explore the true

depth of the VHDL language. There are many on-line VHDL reference

3

books and free tutorials. If you find yourself becoming curious about what

this book is not telling you about VHDL, take a look at some of these

references.

1
Introduction To VHDL

VHDL has a rich and interesting history1. But since knowing this history

is probably not going to help you write better VHDL code, it will only be

briefly mentioned here. Consulting other, lengthier texts or search engines

will provide more information for those who are interested. Regarding the

VHDL acronym, the V is short for yet another acronym: VHSIC or Very

High-Speed Integrated Circuit. The HDL stands for Hardware Description

Language. Clearly, the state of technical affairs these days has done away

with the need for nested acronyms. VHDL is a true computer language

with the accompanying set of syntax and usage rules. But, as opposed to

higher-level computer languages, VHDL is primarily used to describe hard-

ware. The tendency for most people familiar with a higher-level computer

language such as C or Java is to view VHDL as just another computer lan-

guage. This is not altogether a bad approach if such a view facilitates the

understanding and memorization of the language syntax and structure.

The common mistake made by someone with this approach is to attempt

to program in VHDL as they would program a higher-level computer lan-

guage. Higher-level computer languages are sequential in nature; VHDL

is not.

VHDL was invented to describe hardware and in fact VHDL is a con-

current language. What this means is that, normally, VHDL instructions

are all executed at the same time (concurrently), regardless of the size of

1VHDL-Wikipedia: http://en.wikipedia.org/wiki/VHDL

http://en.wikipedia.org/wiki/VHDL

6 Chapter 1: Introduction To VHDL

your implementation. Another way of looking at this is that higher-level

computer languages are used to describe algorithms (sequential execution)

and VHDL is used to describe hardware (parallel execution). This inher-

ent difference should necessarily encourage you to re-think how you write

your VHDL code. Attempts to write VHDL code with a high-level lan-

guage style generally result in code that nobody understands. Moreover,

the tools used to synthesize2 this type of code have a tendency to gener-

ate circuits that generally do not work correctly and have bugs that are

nearly impossible to trace. And if the circuit does actually work, it will

most likely be inefficient due to the fact that the resulting hardware was

unnecessarily large and overly complex. This problem is compounded as

the size and complexity of your circuits becomes greater.

There are two primary purposes for hardware description languages such

as VHDL. First, VHDL can be used to model digital circuits and systems.

Although the word “model” is one of those overly used words in engin-

eering, in this context it simply refers to a description of something that

presents a certain level of detail. The nice thing about VHDL is that the

level of detail is unambiguous due to the rich syntax rules associated with

it. In other words, VHDL provides everything that is necessary in order

to describe any digital circuit. Likewise, a digital circuit/system is any

circuit that processes or stores digital information. Second, having some

type of circuit model allows for the subsequent simulation and/or testing

of the circuit. The VHDL model can also be translated into a form that

can be used to generate actual working circuits. The VHDL model is ma-

gically3 interpreted by software tools in such a way as to create actual

digital circuits in a process known as synthesis.

There are other logic languages available to model the behavior of di-

gital circuit designs that are easy to use because they provide a graphical

method to model circuits. For them, the tendency is to prefer the graphical

approach because it has such a comfortable learning curve. But, as you can

2Synthesis: the process of interpreting the VHDL code and output a definition of

the physical implementation of the circuit to be programmed in a device such as an

FPGA.
3It is not really magic. There is actually a well-defined science behind it.

7

easily imagine, your growing knowledge of digital concepts is accompanied

by the ever-increasing complexity of digital circuits you are dealing with.

The act of graphically connecting a bunch of lines on the computer screen

quickly becomes tedious. The more intelligent approach to digital circuit

design is to start with a system that is able to describe exactly how your

digital circuit works (in other words, modeling it) without having to worry

about the details of connecting large quantities of signal lines. Having a

working knowledge of VHDL will provide you with the tools to model

digital circuits in a much more intelligent manner.

Finally, you will be able to use your VHDL code to create actual func-

tioning circuits. This allows you to implement relatively complex circuits

in a relatively short period of time. The design methodology you will be

using allows you to dedicate more time to designing your circuits and less

time “constructing” them. The days of placing, wiring and troubleshooting

multiple integrated circuits on a proto-board are gone.

VHDL is a very exciting language that can allow the design and imple-

mentation of functions capable of processing an enormous amount of data

by employing a relatively low-cost and low-power hardware. Moreover,

what is really impressive is that, via simple VHDL modules, you can have

direct access to basic ns-level logic events as well as communicate using a

USB port or drive a VGA monitor to visualize graphics of modest com-

plexity.

Modeling digital circuits with VHDL is a form of modern digital design

distinct from schematic-based approaches. The programmer writes a loose

description of what the final logic circuit should do and a language com-

piler, in this case called a synthesizer, attempts to “infer” what the actual

final physical logic circuit should be. Novice programmers are not always

able to convince the synthesizer to implement something that seems very

clear in their minds. A somehow old-fashioned alternative to a descriptive

language such as VHDL is one in which the programmer simply intercon-

nects a finite number of digital blocks that he has pooled from a library

in an attempt to reach the same objective. This approach is not only very

time consuming but also inherently limiting and very error prone.

Modern digital design is more about appropriately modeling digital cir-

8 Chapter 1: Introduction To VHDL

cuits and maintaining a quality description of the circuit. All that is left

now is to learn how to properly use VHDL to describe what you want to

implement.

1.1 Golden Rules of VHDL

Before you start, here are a couple of points that you should never forget

when working with VHDL.

VHDL is a hardware-design language. Although most people have

probably already been exposed to some type of higher-level computer lan-

guage, these skills are only indirectly applicable to VHDL. When you are

working with VHDL, you are not programming, you are “designing hard-

ware”. Your VHDL code should reflect this fact. What does this mean? It

means that unless you are inside certain constructs, your code lines will

be executed almost all at once. If your VHDL code appears too similar to

code of a higher-level computer language, it is probably bad VHDL code.

This is vitally important.

Have a general concept of what your hardware should look like.

Although VHDL is vastly powerful, if you do not understand basic digital

constructs, you will probably be unable to generate efficient digital cir-

cuits. Digital design is similar to higher-level language programming in

that even the most complicated programming at any level can be broken

down into some simple programming constructs. There is a strong analogy

to digital design in that even the most complicated digital circuits can be

described in terms of basic digital constructs. In other words, if you are

not able to roughly envision the digital circuit you are trying to model

in terms of basic digital circuits, you will probably misuse VHDL, thus

angering the VHDL gods. VHDL is cool, but it is not as magical as it

initially appears to be.

1.2 Tools Needed for VHDL Development

VHDL is a language used to implement hardware which will run other

software (for example C). A Field Programmable Gate Array (FPGA)

1.2 Tools Needed for VHDL Development 9

is probably the most common device that you can use for your VHDL

implementations. If you want to do VHDL coding for FPGAs you will have

to play within the rules that current major FPGA manufacturers have

drawn up to help you (rules which also ensure their continued existence

in the market).

The successful implementation of a VHDL-based system roughly calls

for the following steps: VHDL code writing, compiling, simulation and

synthesis. All major FPGA manufacturers have a set of software and hard-

ware tools that you can use to perform the mentioned steps. Most of these

software tools are free of charge but are not open-source. Nevertheless,

the same tools follow a license scheme, whereby paying a certain amount

of money allows you to take advantage of sophisticated software features

or get your hands on proprietary libraries with lots of components (e.g. a

32-bit processor) that you can easily include in your own project.

If your have no interest in proprietary libraries you can use open-source

solutions (e.g. GHDL4 or BOOT5) which will allow you to compile and

simulate your VHDL code using the open-source tool gcc6. At the time

of writing, no open-source solution is available for the synthesis process.

However synthesis can be accomplished using a free-license version of any

major FPGA manufacturer’s software tool (e.g. Xilinx ISE Design Suite).

Thanks to the open-source community, you can write, compile and sim-

ulate VHDL systems using excellent open-source solutions. This book will

show you how to get up and running with the VHDL language. For further

tasks such as synthesis and upload of your code into an FPGA, the free

of charge Xilinx ISE Design Suite7 or the Altera equivalent tool Quartus,

can be employed.

4VHDL simulator GHDL: http://ghdl.free.fr
5VHDL software tool BOOT: http://www.freerangefactory.org
6Multi-language open-source compiler GCC: http://gcc.gnu.org
7Xilinx ISE Design Suite: http://www.xilinx.com/tools/designtools.htm

http://ghdl.free.fr
http://www.freerangefactory.org
http://gcc.gnu.org
http://www.xilinx.com/tools/designtools.htm

2
VHDL Invariants

There are several features of VHDL that you should know before moving

forward. Although it is rarely a good idea for people to memorize anything,

you should memorize the basic concepts presented in this section. This

should help eliminate some of the drudgery involved in learning a new

programming language and lay the foundation that will enable you to

create visually pleasing and good VHDL source code.

2.1 Case Sensitivity

VHDL is not case sensitive. This means that the two statements shown

in Listing 2.1 have the exact same meaning (don’t worry about what the

statement actually means though). Keep in mind that Listing 2.1 shows an

example of VHDL case sensitivity and not good VHDL coding practices.

Listing 2.1: An example of VHDL case insensitivity.

Dout <= A and B; doUt <= a AnD b;

2.2 White Space

VHDL is not sensitive to white space (spaces and tabs) in the source

document. The two statements in Listing 2.2 have the exact same meaning.

Once again, Listing 2.2 is not an example of good VHDL coding style. Note

that Listing 2.2 once again indicates that VHDL is not case sensitive.

Listing 2.2: An example showing VHDL’s indifference to white space.

nQ <= In_a or In_b; nQ <=in_a OR in_b;

12 Chapter 2: VHDL Invariants

2.3 Comments

Comments in VHDL begin with the symbol “--” (two consecutive dashes).

The VHDL synthesizer ignores anything after the two dashes and up to

the end of the line in which the dashes appear. Listing 2.3 shows two types

of commenting styles. Unfortunately, there are no block-style comments

(comments that span multiple lines but do not require comment marks on

every line) available in VHDL.

Listing 2.3: Two typical uses of comments.

-- This next section of code is used to blah-blah
-- This type of comment is the best fake for block-style commenting.
PS_reg <= NS_reg; -- Assign next_state value to present_state

Appropriate use of comments increases both the readability and the

understandability of VHDL code. The general rule is to comment any line

or section of code that may not be clear to a reader of your code besides

yourself. The only inappropriate use of a comment is to state something

that is patently obvious. It is hard to imagine code that has too few

comments so don’t be shy: use lots of comments. Research has shown that

using lots of appropriate comments is actually a sign of high intelligence.

2.4 Parentheses

VHDL is relatively lax on its requirement for using parentheses. Like other

computer languages, there are a few precedence rules associated with the

various operators in the VHDL language. Though it is possible to learn

all these rules and write clever VHDL source code that will ensure the

readers of your code are left scratching their heads, a better idea is to

practice liberal use of parentheses to ensure the human reader of your

source code understands the purpose of the code. Once again, the two

statements appearing in Listing 2.4 have the same meaning. Note that

extra white space has been added along with the parentheses to make the

lower statement clearer.

2.5 VHDL Statements 13

Listing 2.4: Example of parentheses that can improve clarity.

if x = '0' and y = '0' or z = '1' then
blah; -- some useful statement
blah; -- some useful statement

end if;
if (((x = '0') and (y = '0')) or (z = '1')) then

blah; -- some useful statement
blah; -- some useful statement

end if;

2.5 VHDL Statements

Similar to other algorithmic computer languages, every VHDL statement

is terminated with a semicolon. This fact helps when attempting to remove

compiling errors from your code since semicolons are often omitted dur-

ing initial coding. The main challenge then is to know what constitutes

a VHDL statement in order to know when to include semicolons. The

VHDL synthesizer is not as forgiving as other languages when superfluous

semicolons are placed in the source code.

2.6 if, case and loop Statements

As you will soon find out, the VHDL language contains if, case and

loop statements. A common source of frustration that occurs when learn-

ing VHDL are the classic mistakes involving these statements. Always

remember the rules stated below when writing or debugging your VHDL

code and you will save yourself a lot of time. Make a note of this section as

one you may want to read again once you have had a formal introduction

to these particular statements.

• Every if statement has a corresponding then component

• Each if statement is terminated with an end if;

• If you need to use an else if construct, the VHDL version is elsif

• Each case statement is terminated with an end case;

• Each loop statement has a corresponding end loop; statement

In general, you should not worry too much about memorizing code syntax

as chances are you will use an editor sophisticated enough to have code

14 Chapter 2: VHDL Invariants

snippets (namely Gedit1). A good programmer distinguishes himself by

other means than perfectly remembering code syntax.

2.7 Identifiers

An identifier refers to the name given to various items in VHDL. Examples

of identifiers in higher-level languages include variable names and function

names. Examples of identifiers in VHDL include variable names, signal

names and port names (all of which will be discussed soon). Listed below

are the hard and soft rules (i.e. you must follow them or you should follow

them), regarding VHDL identifiers.

• Identifiers should be self-describing. In other words, the text you apply

to identifiers should provide information as to the use and purpose of

the item the identifier represents.

• Identifiers can be as long as you want (contain many characters).

Shorter names make for better reading code, but longer names present

more information. It is up to the programmer to choose a reasonable

identifier length.

• Identifiers can only contain a combination of letters (A-Z and a-z),

digits (0-9) and the underscore character (“ ”).

• Identifiers must start with an alphabetic character.

• Identifiers must not end with an underscore and must never have two

consecutive underscores.

• The best identifier for a function that calculates the position of the

Earth is CalcEarthPosition or calc earth position. Try to be con-

sistent.

• The best identifier for a variable that stores the age of your car is

AgeMyCar or age my car. Again, try to be consistent.

Remember, intelligent choices for identifiers make your VHDL code more

readable, understandable and more impressive to coworkers, superiors,

1Gedit, the official Linux GNOME text editor. http://projects.gnome.org/

gedit

http://projects.gnome.org/gedit
http://projects.gnome.org/gedit

2.8 Reserved Words 15

family and friends. A few examples of both good and bad choices for

identifier names appear in Listing 2.5 and in Listing 2.6.

Listing 2.5: Valid identifies.

data_bus --descriptive name
WE --classic write enable
div_flag --real winner
port_A --provides some info
in_bus --input bus
clk --classic clock
clk_in
clk_out
mem_read_data
--
--
--

Listing 2.6: Invalid identifies.

3Bus_val -- begins with a number
DDD -- not self commenting
mid_$num -- illegal character
last__val-- consec. underscores
str_val_ -- ends with underscore
in -- uses VHDL reserved word
@#$%% -- total garbage
it_sucks -- try to avoid
Big_vAlUe-- valid but ugly
pa -- possibly lacks meaning
sim-val -- illegal character(dash)
DDE_SUX -- no comment

2.8 Reserved Words

There is a list of words that have been assigned special meaning by

the VHDL language. These special words, usually referred to as reserved

words, cannot be used as identifiers when writing VHDL code. A partial

list of reserved words that you may be inclined to use appears in Listing

2.7. A complete list of reserved words appears in the Appendix. Notably

missing from Listing 2.7 are standard operator names such as AND, OR,

XOR, etc.

Listing 2.7: A short list of VHDL reserved words.

access after alias all attribute block
body buffer bus constant exit file
for function generic group in is
label loop mod new next null
of on open out range rem
return signal shared then to type
until use variable wait while with

2.9 VHDL Coding Style

Coding style refers to the appearance of the VHDL source code. Obviously,

the freedom provided by case insensitivity, indifference to white space

and lax rules on parentheses creates a coding anarchy. The emphasis in

coding style is therefore placed on readability. Unfortunately, the level

of readability of any document, particularly coding text, is subjective.

Writing VHDL code is similar to writing code in other computer languages

such as C and Java where you have the ability to make the document more

16 Chapter 2: VHDL Invariants

readable without changing the functioning of the code. This is primarily

done by indenting certain portions of the program, using self-describing

identifiers and providing proper comments when and where necessary.

Instead of stating here a bunch of rules for you to follow as to how your

code should look, you should instead strive to simply make your source

code readable. Listed below are a few thoughts on what makes readable

source code.

• Chances are that if your VHDL source code is readable to you, it will

be readable to others who may need to peruse your document. These

other people may include someone who is helping you get the code

working properly, someone who is assigning a grade to your code, or

someone who signs your paycheck at the end of the day. These are

the people you want to please. These people are probably very busy

and more than willing to make a superficial glance at your code. Nice

looking code will slant such subjectivity in your favor.

• If in doubt, your VHDL source code should be modeled after some

other VHDL document that you find organized and readable. Any code

you look at that is written down somewhere is most likely written by

someone with more VHDL experience than a beginner such as yourself.

Emulate the good parts of their style while on the path to creating an

even more readable style.

• Adopting a good coding style helps you write code without mistakes.

As with other compilers you have experience with, you will find that

the VHDL compiler does a great job of knowing a document has an

error but a marginal job at telling you where or what the error is.

Using a consistent coding style enables you to find errors both before

compilation and after the compiler has found an error.

• A properly formatted document explicitly presents information about

your design that would not otherwise be readily apparent. This is par-

ticularly true when using proper indentation and sufficient comments.

3
VHDL Design Units

The “black-box” approach to any type of design implies a hierarchical

structure in which varying amounts of detail are available at each of the

different levels of the hierarchy. In the black-box approach, units of action

which share a similar purpose are grouped together and abstracted to a

higher level. Once this is done, the module is referred to by its inherently

more simple black-box representation rather than by the details of the

circuitry that actually performs that functionality. This approach has two

main advantages. First, it simplifies the design from a systems standpoint.

Examining a circuit diagram containing appropriately named black boxes

is much more understandable than staring at a circuit containing a count-

less number of logic gates. Second, the black-box approach allows for the

reuse of previously written code.

Not surprisingly, VHDL descriptions of circuits are based on the black-

box approach. The two main parts of any hierarchical design are the black

box and the stuff that goes in the black box (which can of course be other

black boxes). In VHDL, the black box is referred to as entity and the stuff

that goes inside it is referred to as the architecture. For this reason, the

VHDL entity and architecture are closely related. As you can probably

imagine, creating the entity is relatively simple while a good portion of

the VHDL coding time is spent on properly writing the architecture. Our

approach here is to present an introduction to writing VHDL code by

describing the entity and then moving on to the details of writing the

18 Chapter 3: VHDL Design Units

architecture. Familiarity with the entity will hopefully aid in your learning

of the techniques to describe the architecture.

3.1 Entity

The VHDL entity construct provides a method to abstract the functional-

ity of a circuit description to a higher level. It provides a simple wrapper

for the lower-level circuitry. This wrapper effectively describes how the

black box interfaces with the outside world. Since VHDL describes digital

circuits, the entity simply lists the various inputs and outputs of the un-

derlying circuitry. In VHDL terms, the black box is described by an entity

declaration. The syntax of the entity declaration is shown in Listing 3.1.

Listing 3.1: The entity declaration in VHDL.

entity my_entity is
port(

port_name_1 : in std_logic ;
port_name_2 : out std_logic;
port_name_3 : inout std_logic); --do not forget the semicolon

end my_entity; -- do not forget this semicolon either

my entity defines the name of the entity. The next section is nothing

more than the list of signals from the underlying circuit that are available

to the outside world, which is why it is often referred to as an interface

specification. The port name x is an identifier used to differentiate the

various signals. The next keyword (the keyword in) specifies the direction

of the signal relative to the entity where signals can either enter, exit or do

both. These input and output signals are associated with the keywords in,

out and inout1 respectively. The next keyword (the keyword std logic)

refers to the type of data that the port will handle. There are several data

types available in VHDL but we will primarily deal with the std logic

type and derived versions. More information regarding the various VHDL

data types will be discussed later.

When you attempt to write fairly complicated VHDL code, you will need

to split your code into different files, functions and packages constructors

which will help you better deal with your code. In this scenario, the entity

body will not only host the port definition statements but, most likely,

other procedures as well. We will talk about this later in the book.

1The inout data mode will be discussed later on in the book.

3.1 Entity 19

Listing 3.2: VHDL entity declaration.

-- interface description --
-- of killer_ckt --

entity killer_ckt is
port (
life_in1 : in std_logic;
life_in2 : in std_logic;
crtl_a, ctrl_b : in std_logic;
kill_a : out std_logic;
kill_b, kill_c : out std_logic);
end killer_ckt;

killer ckt

life in1

life in2

ctrl a

ctrl b

kill a

kill b

kill c

Listing 3.2 shows an example of a black box and the VHDL code used to

describe it. Listed below are a few points to note about the code in Listing

3.2. Most of the points deal with the readability and understandability of

the VHDL code.

• Each port name is unique and has an associated mode and data type.

This is a requirement.

• The VHDL compiler allows several port names to be included on a

single line. Port names are separated by commas. Always strive for

readability.

• Port names are somewhat lined up in a feeble attempt to increase read-

ability. This is not a requirement but you should always be striving for

readability. Remember that white spaces are ignored by the compiler.

• A comment, which tells us what this this entity does, is included.

• A black-box diagram of the circuit is also provided. Once again, draw-

ing some type of diagram helps with any VHDL code that you may be

writing. Remember: do not be scared, draw a picture.

Hopefully, you are not finding these entity specifications too challenging.

In fact, they are so straightforward, we will throw in one last twist before

we leave the realm of VHDL entities. Most of the more meaningful circuits

that you will be designing, analyzing and testing have many similar and

closely related inputs and outputs. These are commonly referred to as “bus

signals” in computer lingo. Bus lines are made of more than one signal

that differ in name by only a numeric character. In other words, each

20 Chapter 3: VHDL Design Units

separate signal in the bus name contains the bus name plus a number to

separate it from other signals in the bus. Individual bus signals are referred

to as elements of the bus. As you would imagine, buses are often used

in digital circuits. Unfortunately, the word bus also refers to established

data transfer protocols. To disambiguate the word bus, we will be using

the word “bundle” to refer to a set of similar signals and bus to refer to a

protocol.

Bundles are easily described in the VHDL entity. All that is needed is

a new data type and a special notation to indicate when a signal is a

bundle or not. A few examples are shown in Listing 3.3. In these examples

note that the mode remains the same but the type has changed. The

std logic data type has now been replaced by the word std logic vector

to indicate that each signal name contains more than one signal. There

are ways to reference individual members of each bundle, but we will get

to those details later.

As you can see by examining Listing 3.3, there are two possible methods

to describe the signals in a bundle. These two methods are shown in the

argument lists that follow the data type declaration. The signals in the

bus can be listed in one of two orders which are specified by the to and

downto keywords. If you want the most significant bit of your bundle to

be on the the first bit on the left you use downto keyword. Be sure not to

forget the orientation of signals when you are using this notation in your

VHDL model.

In the black box of Listing 3.3 you can see the formal notation for a

bundle. Note that the black box uses a slash-and-number notation. The

slash across the signal line indicates the signal is a bundle and the asso-

ciated number specifies the number of signals in the bundle. Worthy of

mention regarding the black box relative to Listing 3.3 is that the input

lines sel1 and sel0 could have been made into one bundle containing

the two signals.

3.1 Entity 21

mux 4

a data
8

/

b data
8

/

c data
8

/

d data
8

/

sel0

sel1

data out
8

/

Listing 3.3: Entity declaration with bundles.

-- Unlike the other examples, this is actually an interface
-- for a MUX that selects one of four bus lines for the output.

entity mux4 is
port (a_data : in std_logic_vector(0 to 7);

b_data : in std_logic_vector(0 to 7);
c_data : in std_logic_vector(0 to 7);
d_data : in std_logic_vector(0 to 7);
sel1,sel0 : in std_logic;
data_out : out std_logic_vector(0 to 7));

end mux4;

The data type std logic and the data type std logic vector is

what the IEEE has standardized for the representation of digital signals.

Normally, you should consider that these data types assume the logic value

1 or the logic value 0. However, as specified in the std logic 1164 pack-

age, the implementation of the std logic type (and the std logic vector

type) is a little more generous and includes 9 different values, specifically:

0,1,U,X,Z,W,L,H,-.

The data type std logic becomes available to you soon after the de-

claration library IEEE; use IEEE.std logic 1164.all; at the

beginning of your code.

The reason for all these values is the desire for modeling three-state

drivers, pull-up and pull-down outputs, high impedance state and a few

others types of inputs/outputs. For more details refer to the IEEE 1164

Standard2.

Alternatively to the std logic data type, VHDL programmers some-

times use the much simpler data type bit which has only the logic values

1 and 0.

2IEEE 1164 Standard http://en.wikipedia.org/wiki/IEEE_1164

http://en.wikipedia.org/wiki/IEEE_1164

22 Chapter 3: VHDL Design Units

3.2 VHDL Standard Libraries

The VHDL language as many other computer languages, has gone through

a long and intense evolution. Among the most important standardization

steps we can mention are the release of the IEEE Standard 1164 pack-

age as well as some child standards that further extended the functionality

of the language. In order to take advantage of the main implementable fea-

ture of VHDL you just need to import the two main library packages as

shown in lines 2∼4 of Listing 3.4.

Listing 3.4: Typical inclusions of IEEE standard libraries.

1 -- library declaration
2 library IEEE;
3 use IEEE.std_logic_1164.all; -- basic IEEE library
4 use IEEE.numeric_std.all; -- IEEE library for the unsigned type and
5 -- various arithmetic operators
6

7 -- WARNING: in general try NOT to use the following libraries
8 -- because they are not IEEE standard libraries
9 -- use IEEE.std_logic_arith.all;

10 -- use IEEE.std_logic_unsigned.all;
11 -- use IEEE.std_logic_signed
12

13 -- entity
14 entity my_ent is
15 port (A,B,C : in std_logic;
16 F : out std_logic);
17 end my_ent;
18 -- architecture
19 architecture my_arch of my_ent is
20 signal v1,v2 : std_logic_vector (3 downto 0);
21 signal u1 : unsigned (3 downto 0);
22 signal i1 : integer;
23 begin
24 u1 <= "1101";
25 i1 <= 13;
26 v1 <= std_logic_vector(u1); -- = "1101"
27 v2 <= std_logic_vector(to_unsigned(i1, v2'length)); -- = "1101"
28

29 -- "4" could be used instead of "v2'length", but the "length"
30 -- attribute makes life easier if you want to change the size of v2
31

32 F <= NOT (A AND B AND C);
33 end my_arch;

Once these packages have been included, you will have access to a very

large set of goodies: several data types, overloaded operators, various con-

version functions, math functions and so on. For instance, the inclusion of

the package numeric std.all will give you the possibility of using the

unsigned data type and the function to unsigned shown in Listing

3.4. For a detailed description of what these libraries include, refer to the

Language Templates of your favorite synthesis software tool (e.g. the

3.3 Architecture 23

yellow light bulb in the top panel of the Xilinx ISE software tool).

For more information on VHDL standard libraries refer to the Appendix.

3.3 Architecture

The VHDL entity declaration, introduced before, describes the interface

or the external representation of the circuit. The architecture describes

what the circuit actually does. In other words, the VHDL architecture

describes the internal implementation of the associated entity. As you can

probably imagine, describing the external interface to a circuit is generally

much easier than describing how the circuit is intended to operate. This

statement becomes even more important as the circuits you are describing

become more complex.

There can be any number of equivalent architectures describing a single

entity. As you will eventually discover, the VHDL coding style used inside

the architecture body has a significant effect on the way the circuit is

synthesized (how the circuit will be implemented inside an actual silicon

device). This gives the VHDL programmer the flexibility of designing sys-

tems with specific positive or negative features such as particular physical

size (measuring the number of needed basic digital elements) or opera-

tional speed.

For various reasons, such as facilitating code re-usability and connectib-

ility, an architecture can be modeled in different ways. Understanding the

various modeling techniques and understanding how to use them represent

the first important steps in learning VHDL.

An architecture can be written by means of three modeling techniques

plus any combination of these three. There is the data-flow model, the

behavioral model, the structural model and the hybrid models.

These models will be described throughout the book. Listing 3.5 gives a

sneak preview of what a simple but complete VHDL code block looks like.

3.4 Signal and Variable Assignments

In VHDL there are several object types. Among the most frequently used

we will mention the signal object type, the variable object type and the

constant object type. The signal type is the software representation of a

24 Chapter 3: VHDL Design Units

Listing 3.5: Example of a simple VHDL block.

1 ---------------------- FILE: my_sys.vhd ----------------------
2 -- library declaration
3 library ieee;
4 use ieee.std_logic_1164.all;
5

6 -- the ENTITY
7 entity circuit1 is
8 port (
9 A,B,C : in std_logic;

10 F, G : out std_logic);
11 end circuit1;
12

13 -- the ARCHITECTURE
14 architecture circuit1_arc of circuit1 is
15 signal sig_1 : std_logic; -- signal definition
16 begin
17 process (a,b,c)
18 variable var_1 : integer; -- variable definition
19 begin
20 F <= not (A and B and C); -- signal assignment
21 sig_1 <= A; -- another signal assignment
22 var_1 := 34; -- variable assignment
23 end process;
24 G <= not (A and B); -- concurrent assignment
25 end circuit1_arc;

wire. The variable type, like in C or Java, is used to store local information.

The constant is like a variable object type, the value of which cannot be

changed. A signal object can be of different types; we saw before, for

example, that a signal object can be of type std logic or of other types

like integer, custom types, etc. The same applies for variable objects.

Before using any signal or variable, it is mandatory to declare them.

Signals are declared at the top of the architecture body, just before the

keyword begin. Variables must be declared inside the process construct

and are local. An example is shown in line 15 and 18 of Listing 3.5.

As seen in line 20 and line 21 of Listing 3.5 when you want to assign a new

value to an object of type signal you use the operator “<=”. Alternatively,

when you want to assign a new value to an object of type variable you

will use the operator “:=”, shown in line 22.

It is important to understand the difference between variables and sig-

nals, specifically when their value changes. A variable changes its value

soon after the variable assignment is executed. Instead, a signal changes

its value “some time” after the signal assignment expression is evaluated.

This has important consequences for the updated values of variables and

3.5 Summary 25

signals. This means that you should never assume that a signal assignment

can happen instantly and it also means that you can take advantage of

variables every time you need to implement a counter or to store values

when inside a process.

In order to be able to introduce the use of a variable we had to employ

the process construct, a construct that you are not yet familiar with. We

will see more in details later on in the book that any time we need a non-

concurrent execution environment where code lines are executed one after

the other (like in C or Java), we will be using the process construct. Inside

a process, all instructions are executed consecutively from top to bottom.

However the process itself will be executed concurrently with the rest of

the code (e.g. the instruction at line 24).

Always remember that the assignment of Listing 3.5 at line 24 and the

execution of the process, are not executed consecutively but instead con-

currently (all at the same time). Any hope that the execution of line 24

will happen before or after the execution of the process will only result in

great disappointment.

As a final note, let us to remind that the type std logic only exists if

you declare the library ieee.std logic 1164.all as done in line 4 of

Listing 3.5.

3.5 Summary

• The entity declaration describes the inputs and outputs of your circuit.

This set of signals is often referred to as the interface to your circuit

since these signals are what the circuitry, external to the entity, uses

to interact with your circuit.

• Signals described in the entity declaration include a mode specifier and

a type. The mode specifier can be either an in or an out (or, as we will

see later on, even an inout) while the type is either a std logic or

std logic vector.

• The word bundle is preferred over the word bus when dealing with

multiple signals that share a similar purpose. The word bus has other

connotations that are not consistent with the bundle definition.

26 Chapter 3: VHDL Design Units

• Multiple signals that share a similar purpose should be declared as

a bundle using a std logic vector type. Bundled signals such as

these are always easier to work with in VHDL compared to scalar types

such as std logic.

• The architecture describes what your circuit actually does and what

its behavior is. Several possible implementations (models) of the same

behavior are possible in VHDL. These are the data-flow model, the

behavioral model, the structural model as well as any combination

of them, generally called hybrid model.

3.6 Exercises

1. What is referred to by the word bundle?

2. What is a common method of representing bundles in black-box

diagrams?

3. Why is it considered a good approach to always draw a black-box

diagram when using VHDL to model digital circuits?

4. Write VHDL entity declarations that describe the following black-

box diagrams:

a)

sys1

a in1

b in2

clk

ctrl int

out b

b)

sys2

input w

a data
8

/

b data
8

/

clk

dat 4
8

/

dat 5
3

/

5. Provide black-box diagrams that are defined by the following VHDL

entity declarations:

a)

entity ckt_c is
port (

bun_a, bun_b, bun_c : in std_logic_vector(7 downto 0);
lda, ldb, ldc : in std_logic;
reg_a, reg_b, reg_c : out std_logic_vector(7 downto 0));

end ckt_c;

3.6 Exercises 27

b)

entity ckt_e is
port (

RAM_CS, RAM_WE, RAM_OE : in std_logic;
SEL_OP1, SEL_OP2 : in std_logic_vector(3 downto 0);
RAM_DATA_IN : in std_logic_vector(7 downto 0);
RAM_ADDR_IN : in std_logic_vector(9 downto 0);
RAM_DATA_OUT : in std_logic_vector(7 downto 0));

end ckt_e;

6. The following two entity declarations contain two of the most com-

mon syntax errors made in VHDL. What are they?

a)

entity ckt_a is
port (

J,K : in std_logic;
CLK : in std_logic
Q : out std_logic;)

end ckt_a;

b)

entity ckt_b is
port (
mr_fluffy : in std_logic_vector(15 downto 0);
mux_ctrl : in std_logic_vector(3 downto 0);
byte_out : out std_logic_vector(3 downto 0);
end ckt_b;

4
VHDL Programming Paradigm

The previous chapter introduced the idea of the basic design units of

VHDL: the entity and the architecture. Most of the time was spent de-

scribing the entity simply because there is so much less involved compared

to the architecture. Remember, the entity declaration is used to describe

the interface of a circuit to the outside world. The architecture is used to

describe how the circuit is intended to function.

Before we get into the details of architecture specification, we must step

back for a moment and remember what it is we are trying to do with

VHDL. We are, for one reason or another, describing a digital circuit.

Realizing this is very important. The tendency for young VHDL pro-

grammers with computer programming backgrounds is to view VHDL as

just another programming language they want or have to learn. Although

many university students have used this approach to pass the basic digital

classes, this is a not a good idea.

When viewed correctly, VHDL represents a completely different ap-

proach to programming while still having many similarities to other pro-

gramming languages. The main similarity is that they both use a syn-

tactical and rule-based language to describe something abstract. But, the

difference is that they are describing two different things. Most program-

ming languages are used to implement functionalities in a sequential man-

ner, one instruction at a time. VHDL however describes hardware and so

30 Chapter 4: VHDL Programming Paradigm

instructions are executed in a concurrent manner1, meaning that all in-

structions are executed at once. Realizing this fact will help you to truly

understand the VHDL programming paradigm and language.

4.1 Concurrent Statements

At the heart of most programming languages are the statements that

form a majority of the associated source code. These statements represent

finite quantities of actions to be taken. A statement in an algorithmic

programming language such as C or Java represents an action to be taken

by the processor. Once the processor finishes one action, it moves onto the

next action specified somewhere in the associated source code. This makes

sense and is comfortable to us as humans because just like the processor,

we are generally only capable of doing one thing at a time. This description

lays the foundation for an algorithmic method where the processor does

a great job of following a set of rules which are essentially the direction

provided by the source code. When the rules are meaningful, the processor

can do amazing things.

VHDL programming is significantly different. Whereas a processor steps

one by one through a set of statements, VHDL has the ability to ex-

ecute a virtually unlimited number of statements at the same time and

in a concurrent manner (in other words, in parallel). Once again, the key

thing to remember here is that we are designing hardware. Parallelism,

or things happening concurrently, in the context of hardware is a much

more straightforward concept than it is in the world of software. If you

have had any introduction to basic digital hardware, you are most likely

already both familiar and comfortable with the concept of parallelism,

albeit not within a programming language.

Figure 4.1 shows a simple example of a circuit that operates in parallel.

As you know, the output of the gates are a function of the gate inputs.

Any time that any gate input changes, there is a possibility that, after an

opportune delay, the gate output will change. This is true of all the gates

in Figure 4.1 or in any digital circuit in general. Once changes to the gate

inputs occur, the circuit status is re-evaluated and the gate outputs may

1In VHDL there are actually ways to obtain sequential execution as well.

4.1 Concurrent Statements 31

CD

B

A

E E out

A 1
A 2

B 1
B 2

D 1

my circuit

Figure 4.1: Some common circuit that is well known to execute parallel op-

erations.

change accordingly. Although the circuit in Figure 4.1 only shows a few

gates, this idea of concurrent operation of all the elements in the circuit is

the same in all digital circuits no matter how large or complex they are.

Since most of us are human, we are only capable of reading one line

of text at a time and in a sequential manner. We have the same limita-

tion when we try to write some text, not to mention enter some text into

a computer. So how then are we going to use text to describe a circuit

that is inherently parallel? We did not have this problem when discussing

something inherently sequential such as standard algorithmic program-

ming. When writing code using an algorithmic programming language,

there is generally only one processing element to focus on at each given

time. Everything more or less follows up in a sequential manner, which

fits nicely with our basic limitation as humans.

The VHDL programming paradigm is built around the concept of ex-

pression parallelism and concurrency with textual descriptions of circuits.

The heart of VHDL programming is the concurrent statement. These are

statements that look a lot like the statements in algorithmic languages but

they are significantly different because the VHDL statements, by defini-

tion, express concurrency of execution.

Listing 4.1 shows the code that implements the circuit shown in Figure

4.1. This code shows four concurrent signal assignment statements. As

seen before, the “<=” construct refers to the signal assignment operator.

It is true that we cannot write these four statements at the same time but

32 Chapter 4: VHDL Programming Paradigm

Listing 4.1: VHDL code for the circuit of Figure 4.1.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;

-- entity
entity my_circuit is
port (A_1,A_2,B_1,B_2,D_1 : in std_logic;

E_out : out std_logic);
end my_circuit;

-- architecture
architecture my_circuit_arc of my_circuit is

signal A_out, B_out, C_out : std_logic;
begin

A_out <= A_1 and A_2;
B_out <= B_1 or B_2;
C_out <= (not D_1) and B_2;
E_out <= A_out or B_out or C_out;

end my_circuit_arc;

we can interpret these statements as actions that occur concurrently. Re-

member to keep in mind that the concept of concurrency is a key concept

in VHDL. If you feel that the algorithmic style of thought is creeping into

your soul, try to snap out of it quickly. The concurrent signal assignment

is discussed in greater detail in the next section.

As a consequence of the concurrent nature of VHDL statements, the

three chunks of code appearing below are 100% equivalent to the code

shown in Listing 4.1. Once again, since the statements are interpreted as

occurring concurrently: the order that these statements appear in your

VHDL source code makes no difference. Generally speaking, it would be a

better idea to describe the circuit as shown in Listing 4.1 since it somewhat

reflects the natural organization of statements.

4.2 Signal Assignment Operator “<=” 33

Listing 4.2: Equivalent VHDL code for the circuit of Figure 4.1.

C_out <= (not D_1) and B_2;
A_out <= A_1 and A_2;
B_out <= B_1 or B_2;
E_out <= A_out or B_out or C_out;

Listing 4.3: Equivalent VHDL code for the circuit of Figure 4.1.

A_out <= A_1 and A_2;
E_out <= A_out or B_out or C_out;
B_out <= B_1 or B_2;
C_out <= (not D_1) and B_2;

Listing 4.4: Equivalent VHDL code for the circuit of Figure 4.1.

B_out <= B_1 or B_2;
A_out <= A_1 and A_2;
E_out <= A_out or B_out or C_out;
C_out <= (not D_1) and B_2;

4.2 Signal Assignment Operator “<=”

Algorithmic programming languages always have some type of assignment

operator. In C or Java, this is the well-known “=” sign. In these languages,

the assignment operator signifies a transfer of data from the right-hand

side of the operator to the left-hand side. VHDL uses two consecutive

characters to represent the assignment operator: “<=”. This combination

was chosen because it is different from the assignment operators in most

other common algorithmic programming languages. The operator is offi-

cially known as a signal assignment operator to highlight its true purpose.

The signal assignment operator specifies a relationship between signals.

In other words, the signal on the left-hand side of the signal assignment

operator is dependent upon the signals on the right-hand side of the op-

erator.

With these new insights into VHDL, you should be able to understand

the code of Listing 4.1 and its relationship to its schematic shown in Figure

4.1. The statement “G <= A AND B;” indicates that the value of the

signal named G represents an AND logic operation between the signals A

and B.

There are four types of concurrent statements that are examined in this

chapter. We have already briefly discussed the concurrent signal assign-

34 Chapter 4: VHDL Programming Paradigm

ment statement which we will soon examine further and put it into the

context of an actual circuit. The three other types of concurrent state-

ments that are of immediate interest to us are the process statement, the

conditional signal assignment and the selected signal assignment.

In essence, the four types of statements represent the tools that you will

use to implement digital circuits in VHDL. You will soon be discovering

the versatility of these statements. Unfortunately, this versatility effect-

ively adds a fair amount of steepness to the learning curve. As you know

from your experience in other programming languages, there are always

multiple ways to do the same things. Stated differently, several seemingly

different pieces of code can actually produce the same result. The same is

true for VHDL code: several considerably different pieces of VHDL code

can actually generate the exact same hardware. Keep this in mind when

you look at any of the examples given in this tutorial. Any VHDL code

used to solve a problem is more than likely one of many possible solutions

to that problem. Some of the VHDL models in this tutorial are presen-

ted to show that something can be done a certain way, but that does not

necessarily mean they can only be done in that way.

4.3 Concurrent Signal Assignment Statements

The general form of a concurrent signal assignment statement is shown in

Listing 4.5. In this case, the target is a signal that receives the values of

the expression. An expression is defined by a constant, by a signal, or by

a set of operators that operate on other signals. Examples of expressions

used in VHDL code are shown in the examples that follow.

Listing 4.5: Syntax for the concurrent signal assignment statement.

<target> <= <expression>;

EXAMPLE 1. Write the VHDL code that implements a three-input

NAND gate. The three input signals are named A, B and C and the

output signal name is F.

SOLUTION. It is good practice to always draw a diagram of the circuit

you are designing. Furthermore, although we could draw a diagram show-

ing the familiar symbol for the NAND gate, we will choose to keep the

4.3 Concurrent Signal Assignment Statements 35

diagram general and take the black-box approach instead. Remember, the

black box is a nice aid when it comes to writing the entity declaration.

The solution to Example 1 is provided in Listing 4.6.

Listing 4.6: Solution of Example 1.

1 -- library declaration
2 library IEEE;
3 use IEEE.std_logic_1164.all;
4 -- entity
5 entity my_nand3 is
6 port (A,B,C : in std_logic;
7 F : out std_logic);
8 end my_nand3;
9 -- architecture

10 architecture exa_nand3 of my_nand3 is
11 begin
12 F <= NOT(A AND B AND C);
13 end exa_nand3;

my nand3

A

B

C

F

This example contains a few new ideas that are worth further clarifica-

tion.

• There are header files and library files that must be included in your

VHDL code in order for your code to correctly compile. These few

lines of code are listed at the top of the code in Listing 4.6. The listed

lines are more than what is needed for this example but they will be

required in later examples. To save space, these lines will be omitted

in some of the coming examples.

• This example highlights the use of several logic operators. The logic

operators available in VHDL are AND, OR, NAND, NOR, XOR and

XNOR. The NOT operator is technically not a logic operator but is

also available. Moreover, these logic operators are considered to be

binary operators in that they operate on the two values appearing on

the left and right-hand side of the operator. The NOT operator is a

unary operator and for that, it only operates on the value appearing

to the right of the operator.

• In this solution, the entity only has one associated architecture. This

is fairly common practice in most VHDL design.

Example 1 demonstrates the use of the concurrent signal assignment (CSA)

statement in a working VHDL program (refer to line 12 of Listing 4.6).

But since there is only one CSA statement, the concept of concurrency is

36 Chapter 4: VHDL Programming Paradigm

not readily apparent. The idea behind any concurrent statement in VHDL

is that the output is changed any time one of the input signals changes.

In other words, the output F is re-evaluated any time a signal on the in-

put expression changes. This is a key concept in truly understanding the

VHDL, so you may want to read that sentence a few more times. The idea

of concurrency is more clearly demonstrated in Example 2.

EXAMPLE 2. Write the VHDL code to implement the function ex-

pressed by the following logic equation: F3 = L ·M ·N + L ·M

SOLUTION. The black box diagram and associated VHDL code is

shown in Listing 4.7.

Listing 4.7: Solution of Example 2.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_ckt_f3 is
port (L,M,N : in std_logic;

F3 : out std_logic);
end my_ckt_f3;
-- architecture
architecture f3_2 of my_ckt_f3 is
begin
F3<=((NOT L)AND(NOT M)AND N)OR(L AND M);
end f3_2;

my ckt f3

L

M

N

F3

This example shows a one-line implementation of the given logic equa-

tion.

An alternative solution to Example 2 is provided in Figure 4.8. This

example represents an important concept in VHDL. The solution shown

in Listing 4.8 uses some special statements in order to implement the cir-

cuit. These special statements are used to provide what is often referred

to as intermediate results. This approach is equivalent to declaring extra

variables in an algorithmic programming language to be used for storing

intermediate results. The need for intermediate results is accompanied by

the declaration of extra signal values, which are often referred to inter-

mediate signals. Note in Listing 4.8 that the declaration of intermediate

signals is similar to the port declarations appearing in the entity declara-

tion, except that the mode specification (in, out or inout) is missing.

The intermediate signals must be declared within the body of the archi-

tecture because they have no link to the outside world and thus do not

4.3 Concurrent Signal Assignment Statements 37

Listing 4.8: Alternative solution of Example 2.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_ckt_f3 is
port (L,M,N : in std_logic;

F3 : out std_logic);
end my_ckt_f3;
-- architecture
architecture f3_1 of my_ckt_f3 is

signal A1, A2 : std_logic; -- intermediate signals
begin

A1 <= ((NOT L) AND (NOT M) AND N);
A2 <= L AND M;
F3 <= A1 OR A2;

end f3_1;

appear in the entity declaration. Note that the intermediate signals are

declared in the architecture body but appear before the begin statement.

Despite the fact that the architectures f3 2 and f3 1 of Listing 4.7

and Listing 4.8 appear different, they are functionally equivalent. This is

because all the statements are concurrent signal assignment statements.

Even though the f3 1 architecture contains three CSAs, they are function-

ally equivalent to the CSA in f3 2 because each of the three statements

is effectively executed concurrently.

Although the approach of using intermediate signals is not mandatory

for this example, their use brings up some good points. First, the use

of intermediate signals is the norm for most VHDL models. The use of

intermediate signals was optional in Listing 4.8 due to the fact that the

example was modeling a relatively simple circuit. As circuits become more

complex, there are many occasions in which intermediate signals must be

used. Secondly, intermediate signals are something of a tool that you will

often need to use in your VHDL models. The idea here is that you are

trying to describe a digital circuit using a textual description language:

you will often need to use intermediate signals in order to accomplish

your goal of modeling the circuit. The use of intermediate signals allows

you to more easily model digital circuits but does not make the generated

hardware more complicated. The tendency in using VHDL is to think that

since there is more text written on your page, the circuit you are describing

38 Chapter 4: VHDL Programming Paradigm

and/or the resulting hardware is larger or more complex. This is simply

not true. The main theme of VHDL is that you should use the VHDL

tools at your disposal in order to model your circuits in the simplest way

possible. Simple circuits have a higher probability of being understood and

synthesized. But most importantly, a simple VHDL model is not related

to the length of the actual VHDL code.

In Example 2, the conversion of the logic function to CSAs was relatively

straightforward. The ease with which these functions can be implemented

into VHDL code was almost trivial. Then again, the function in Example 2

was not overly complicated. As functions become more complicated (more

inputs and outputs), an equation entry approach becomes tedious. Luck-

ily, there are a few other types of concurrent construct that can ease its

implementation.

4.4 Conditional Signal Assignment when

Concurrent signal assignment statements, seen before, associate one tar-

get with one expression. The term conditional signal assignment is used

to describe statements that have only one target but can have more than

one associated expression assigned to the target. Each of the expressions

is associated with a certain condition. The individual conditions are evalu-

ated sequentially in the conditional signal assignment statement until the

first condition evaluates as true. In this case, the associated expression is

evaluated and assigned to the target. Only one assignment is applied per

assignment statement.

The syntax of the conditional signal assignment is shown in Listing 4.9.

The target in this case is the name of a signal. The condition is based

upon the state of some other signals in the given circuit. Note that there

is only one signal assignment operator associated with the conditional

signal assignment statement.

Listing 4.9: The syntax for the conditional signal assignment statement.

<target> <= <expression> when <condition> else
<expression> when <condition> else
<expression>;

The conditional signal assignment statement is probably easiest to un-

derstand in the context of a circuit. For our first example, let us simply

4.4 Conditional Signal Assignment when 39

redo Example 2 using conditional signal assignment instead of concurrent

signal assignment.

EXAMPLE 3. Write the VHDL code to implement the function ex-

pressed in Example 2. Use only conditional signal assignment state-

ments in your VHDL code.

SOLUTION. The entity declaration does not change from Example 2 so

the solution only needs a new architecture description. By reconsidering

the same logic equation of Example 2, F3 = L ·M ·N +L ·M , the solution

to Example 3 is shown in Listing 4.10.

Listing 4.10: Solution of Example 3.

architecture f3_3 of my_ckt_f3 is
begin
F3 <= '1' when (L= '0' AND M = '0' AND N = '1') else

'1' when (L= '1' AND M = '1') else
'0';

end f3_3;

There are a couple of interesting points to note about this solution.

• It is not much of an improvement over the VHDL code written using

concurrent signal assignment. In fact, it looks a bit less efficient in

terms of the number of instructions.

• If you look carefully at this code you will notice that there is in fact

one target and a bunch of expressions and conditions. The associated

expressions are the single digits surrounded by single quotes; the as-

sociated conditions follow the when keyword. In other words, there is

only one signal assignment operator used for each conditional signal

assignment statement.

• The last expression in the signal assignment statement is the catch-all

condition. If none of the conditions listed above the final expression

evaluate as true, the last expression is assigned to the target.

• The solution uses relational operators. There are actually six differ-

ent relational operators available in VHDL. Two of the more common

relational operators are the “=” and “/=” relational operators which

are the “is equal to” and the “is not equal to” operators, respectively.

Operators are discussed at greater length in further sections.

40 Chapter 4: VHDL Programming Paradigm

There are more intelligent uses of the conditional signal assignment state-

ment. One of the classic uses is for the implementation of a multiplexer

(MUX). The next example is a typical conditional signal assignment im-

plementation of a MUX.

EXAMPLE 4. Write the VHDL code that implements a 4:1 MUX

using a single conditional signal assignment statement. The inputs to

the MUX are data inputs D3, D2, D1, D0 and a two-input control bus

SEL. The single output is MX OUT.

SOLUTION. For this example we need to start from scratch. This of

course includes the now famous black-box diagram and the associated

entity statement. The VHDL portion of the solution is shown in Listing

4.11.

Listing 4.11: Solution of Example 4.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_4t1_mux is
port(D3,D2,D1,D0 : in std_logic;

SEL: in std_logic_vector(1 downto 0);
MX_OUT : out std_logic);

end my_4t1_mux;
-- architecture
architecture mux4t1 of my_4t1_mux is
begin

MX_OUT <= D3 when (SEL = "11") else
D2 when (SEL = "10") else
D1 when (SEL = "01") else
D0 when (SEL = "00") else
'0';

end mux4t1;

my 4to1 mux

D3

D2

D1

D0

SEL
2
/

MX OUT

There are a couple of things to note in the solution provided in Listing

4.11.

• The solution looks somewhat efficient compared to the amount of lo-

gic that would have been required if CSA statements were used. The

VHDL code looks good and is pleasing to the eye, qualities required

for readability.

• The “=” relational operator is used in conjunction with a bundle. In

this case, the values on the bundle SEL are accessed using double

quotes around the specified values. In other words, single quotes are

4.4 Conditional Signal Assignment when 41

Listing 4.12: Alternative solution to Example 4 accessing individual signals.

-- entity and architecture of 4:1 Multiplexor implemented using
-- conditional signal assignment. The conditions access the
-- individual signals of the SEL bundle in this model.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_4t1_mux is
port (D3,D2,D1,D0 : in std_logic;

SEL : in std_logic_vector(1 downto 0);
MX_OUT : out std_logic);

end my_4t1_mux;
-- architecture
architecture mux4t1 of my_4t1_mux is
begin

MX_OUT <= D3 when (SEL(1) = '1' and SEL(0) ='1') else
D2 when (SEL(1) = '1' and SEL(0) ='0') else
D1 when (SEL(1) = '0' and SEL(0) ='1') else
D0 when (SEL(1) = '0' and SEL(0) ='0') else
'0';

end mux4t1;

used to describe values of individual signals while double quotes are

used to describe values associated with multiple signals, or bundles.

• For the sake of completeness, we have included every possible condi-

tion for the SEL signal plus a catch-all else statement. We could

have changed the line containing ’0’ to D0 and removed the line as-

sociated with the SEL condition of “00”. This would be functionally

equivalent to the solution shown but would not be nearly as impressive

looking. Generally speaking, you should clearly provide all the options

in the code and not rely on a catch-all statement for intended signal

assignment.

Remember, a conditional signal assignment is a type of concurrent state-

ment. In this case, the conditional signal assignment statement is executed

any time a change occurs in the conditional signals (the signals listed in

the expressions on the right-hand side of the signal assignment operator).

This is similar to the concurrent signal assignment statement where the

statement is executed any time there is a change in any of the signals

listed on the right-hand side of the signal assignment operator.

Though it is still early in the VHDL learning game, you have been ex-

42 Chapter 4: VHDL Programming Paradigm

posed to a lot of concepts and syntax. The conditional signal assignment

is maybe a bit less intuitive than the concurrent signal assignment. There

is however an alternative way to make sense of it. If you think about

it, the conditional signal assignment statement is similar in function to

the if-else constructs in algorithmic programming languages. We will

touch more upon this relationship once we start talking about sequential

statements.

The concept of working with bundles is very important in VHDL. Gener-

ally speaking, if you can use a bundle as opposed to individual signals, you

should. You will often need to access individual signals within a bundle.

When this is the case, a special syntax is used (e.g. SEL(1)). Be sure to

note that the code shown in Listing 4.12 is equivalent to but probably not

as clear as the code shown in Listing 4.11. Be sure to note the similarities

and differences.

4.5 Selected Signal Assignment with select

Selected signal assignment statements are the third type of signal assign-

ment that we will examine. As with conditional signal assignment state-

ments, selected signal assignment statements only have one assignment

operator. Selected signal assignment statements differ from conditional

assignment statements in that assignments are based upon the evaluation

of one expression. The syntax for the selected signal assignment statement

is shown in Listing 4.13.

Listing 4.13: Syntax for the selected signal assignment statement.

with <choose_expression> select
target <= <expression> when <choices>,

<expression> when <choices>;

EXAMPLE 5. Write VHDL code to implement the function expressed

by the following logic equation: F3 = L·M ·N+L·M . Use only selected

signal assignment statements in your VHDL code.

SOLUTION. This is yet another version of the my ckt f3 example that

first appeared in Example 2. The solution is shown in Listing 4.14.

4.5 Selected Signal Assignment with select 43

Listing 4.14: Solution of Example 5.

-- yet another solution to the previous example
architecture f3_4 of my_ckt_f3 is
begin

with ((L ='0' and M ='0'and N ='1')or(L='1' and M='1')) select
F3 <= '1' when '1',

'0' when '0',
'0' when others;

end f3_4;

One thing to notice about the solution shown in Listing 4.14 is the use

of the when others clause as the final entry in the selected signal as-

signment statement. In reality, the middle clause ’0’ when ’0’ could

be removed from the solution without changing the meaning of the state-

ment. In general, it is considered good VHDL programming practice to

include all the expected cases in the selected signal assignment statement

followed by the when others clause.

EXAMPLE 6. Write the VHDL code that implements a 4:1 MUX

using a single selected signal assignment statement. The inputs to the

MUX are data inputs D3, D2, D1, D0 and a two-input control bus SEL.

The single output is MX OUT.

SOLUTION. This is a repeat of Example 4 except that a selected signal

assignment operator is used instead of a conditional signal assignment

operator. The solution of Example 6 is shown in Listing 4.15. The black-

box diagram for this example is the same as before and is not repeated

here.

Once again, there are a few things of interest in the solution for Example

6 which are listed below.

• The VHDL code has several similarities to the solution of Example

5. The general appearance is the same. Both solutions are also much

more pleasing to the eye than the one where the MUX was modeled

using only concurrent signal assignment statements.

• A when others clause is used again. In the case of Example 6, the

output is assigned the constant value of ’0’ when the other listed

conditions of the chooser expression are not met.

• The circuit used in this example was a 4:1 MUX. In this case, each of

44 Chapter 4: VHDL Programming Paradigm

Listing 4.15: Solution of Example 6.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_4t1_mux is
port (D3,D2,D1,D0 : in std_logic;

SEL : in std_logic_vector(1 downto 0);
MX_OUT : out std_logic);

end my_4t1_mux;
-- architecture
architecture mux4t1_2 of my_4t1_mux is
begin
with SEL select

MX_OUT <= D3 when "11",
D2 when "10",
D1 when "01",
D0 when "00",
'0' when others;

end mux4t1_2;

the conditions of the chooser expression is accounted for in the body

of the selected signal assignment statement. However, this is not a

requirement. The only requirement here is that the line containing the

when others keywords appears in the final line of the statement.

EXAMPLE 7. Write the VHDL code that implements the following

circuit. The circuit contains an input bundle of four signals and an

output bundle of three signals. The input bundle, D IN, represents a

4-bit binary number. The output bus, SZ OUT, is used to indicate the

magnitude of the 4-bit binary input number. The relationship between

the input and output is shown in the table below. Use a selected signal

assignment statement in the solution.

range of D IN SZ OUT

0000 → 0011 100

0100 → 1001 010

1010 → 1111 001

unknown value 000

SOLUTION. This is an example of a generic decoder-type circuit. The

solution to Example 7 is shown in Listing 4.16.

4.5 Selected Signal Assignment with select 45

my sz ckt

D IN
4
/ SZ OUT

3
/

Listing 4.16: Solution of Example 7.

-- A decoder-type circuit using selected signal assignment --

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_sz_ckt is

port (D_IN : in std_logic_vector(3 downto 0);
SX_OUT : out std_logic_vector(2 downto 0));

end my_sz_ckt;
-- architecture
architecture spec_dec of my_sz_ckt is
begin

with D_IN select
SX_OUT <= "100" when "0000"|"0001"|"0010"|"0011",

"010" when "0100"|"0101"|"0110"|"0111"|"1000"|"1001",
"001" when "1010"|"1011"|"1100"|"1101"|"1110"|"1111",
"000" when others;

end spec_dec;

The only comment for the solution of Example 7 is that the vertical bar

is used as a selection character in the choices section of the selected signal

assignment statement. This increases the readability of the code as do the

similar constructs in algorithmic programming languages.

Once again, the selected signal assignment statement is one form of a

concurrent statement. This is verified by the fact that there is only one

signal assignment statement in the body of the selected signal assignment

statement. The selected signal assignment statement is evaluated each

time there is a change in the chooser expression listed in the first line of

the selected signal assignment statement.

The final comment regarding the selected signal assignment is similar

to the final comment regarding conditional signal assignment. You should

recognize the general form of the selected signal assignment statement

as being similar to the switch statements in algorithmic programming

languages such as C and Java. Once again, this relationship is examined

in much more depth once we are ready to talk about sequential statements.

46 Chapter 4: VHDL Programming Paradigm

Listing 4.17: Solution of Example 8.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_ckt_f3 is
port (L,M,N : in std_logic;

F3 : out std_logic);
end my_ckt_f3;
-- architecture
architecture f3_8 of my_ckt_f3 is
signal t_sig : std_logic_vector(2 downto 0); -- local bundle
begin
t_sig <= (L & M & N); -- concatenation operator

with (t_sig) select
F3 <= '1' when "001" | "110" | "111",

'0' when others;
end f3_8;

EXAMPLE 8. Write VHDL code to implement the function expressed

by the following logic equation: F3 = L ·M ·N + L ·M .

SOLUTION. This is the same problem examined before. The problem

with the previous solutions to this example is that they required the user

to somehow reduce the function before it was implemented. In this mod-

ern day of digital circuit design, you score the most points when you allow

the VHDL synthesizer to do the work for you. The solution to this ex-

ample hopefully absolves you from ever again having to use a Karnaugh

map, or God forbid, boolean algebra, to reduce a function. The equivalent

expression for F3(L,M,N) = L ·M ·N +L ·M and its Karnaugh map is

shown below. The solution of Example 8 in shown in Listing 4.17.

F3(L,M,N) =
∑

(1, 6, 7)

L M N F3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

4.6 Process Statement 47

4.6 Process Statement

The process statement is the final signal assignment type we will look at.

Before we do that, however, we need to take a few steps back and explore

a few other VHDL principles and definitions that we have excluded up

to now. Remember, there are a thousand ways to learn things. This is

especially true when learning programming languages, where there are

usually many different and varied solutions to the same problem. This is

highlighted by the many different and varied approaches that appear in

VHDL books and by the many tutorials.

So, now is not the time to learn about the process statement. We will do

that right after we pick up a few more VHDL concepts. Now just remem-

ber that the process statement is a statement which contains a certain

number of instructions that, when the process statement is executed, are

executed sequentially. In other words, the process statement is a tool that

you can use any time you want to execute a certain number of instruc-

tions in a sequential manner (one instruction after the other, from top to

bottom). Do not forget, however, that the process statement in itself is

a concurrent statement and therefore will be executed together with the

other concurrent statements in the body of the architecture where it sits.

4.7 Summary

• The entity/architecture pair is the interface description and behavior

description of how a digital circuit operates.

• The main design consideration in VHDL modeling supports the fact

that digital circuits operate in parallel. In other words, the various

design units in a digital design process and store information inde-

pendently of each other. This is the major difference between VHDL

and higher-level computer programming languages.

• The major signal assignment types in VHDL are: concurrent signal

assignment, conditional signal assignment, selected signal assignment

and process statements. Each concurrent statement is interpreted as

acting in parallel (concurrently) to other concurrent statements.

48 Chapter 4: VHDL Programming Paradigm

• The process statement is a concurrent statement that contains a series

of statements which will be executed in a sequential manner, one after

the other. A programmer uses a process statement when he wants to

execute some commands in a sequential manner.

• The architecture body can contain any or all of the mentioned concur-

rent statements.

• Signals that are declared as outputs in the entity declaration cannot

appear on the right-hand side of a signal assignment operator. This

characteristic is prevented from being a problem by the declaration

and use of intermediate signals. Intermediate signals are similar to

signals declared in entities except that they contain no mode specifier.

Intermediate signals are declared inside the architecture body just

before the begin statement.

• Generally speaking, there are multiple approaches in modeling any

given digital circuit. In other words, various types of concurrent state-

ments can be used to describe the same circuit. The designer should

strive for clarity in digital modeling and allow the VHDL synthesizer

to sort out the details.

4.8 Exercises

1. For the following function descriptions, write VHDL models that

implement these functions using concurrent signal assignment.

a) F (A,B) = AB + A + AB

b) F (A,B,C,D) = ACD + BC + BCD

c) F (A,B,C,D) = (A + B) · (B + C + D) · (A + D)

d) F (A,B,C,D) =
∏

(3, 2)

e) F (A,B,C) =
∏

(5, 1, 4, 3)

f) F (A,B,C,D) =
∑

(1, 2)

2. For the following function descriptions, write VHDL models that

implement these functions using both conditional and selected signal

assignment.

4.8 Exercises 49

a) F (A,B,C,D) = ACD + BC + BCD

b) F (A,B,C,D) = (A + B) · (B + C + D) · (A + D)

c) F (A,B,C,D) =
∏

(3, 2)

d) F (A,B,C,D) =
∑

(1, 2)

3. Provide a VHDL model of an 8-input AND gate using concurrent,

conditional and selected signal assignment.

4. Provide a VHDL model of an 8-input OR gate using concurrent,

conditional and selected signal assignment.

5. Provide a VHDL model of an 8:1 MUX using conditional signal

assignment and selected signal assignment.

6. Provide a VHDL model of a 3:8 decoder using conditional signal

assignment and selected signal assignment; consider the decoder’s

outputs to be active-high.

7. Provide a VHDL model of a 3:8 decoder using conditional signal

assignment and selected signal assignment; consider the decoder’s

outputs to be active-low.

5
Standard Models in VHDL Architectures

As you may remember, the VHDL architecture describes how your VHDL

system will behave. The architecture body contains two parts: the declar-

ation section and the begin-end section where a collection of (concurrent)

signal assignments appear. We have studied three types of signal assign-

ment so far: concurrent signal assignment, conditional signal assignment

and selected signal assignment. We were about to describe another concur-

rent statement, the process statement, before we got side-tracked. Now,

let us quickly introduce a new topic before we jump into the process state-

ment.

There are three different approaches to writing VHDL architectures.

These approaches are known as data-flow style, structural style and be-

havioral style architectures. The standard approach to learning VHDL is

to introduce each of these architectural styles individually and design a few

circuits using that style. Although this approach is good from the stand-

point of keeping things simple while immersed in the learning process,

it is also somewhat misleading because more complicated VHDL circuits

generally use a mixture of these three styles. Keep this fact in mind in

the following discussion of these styles. We will, however, put most of our

focus on data-flow and behavioral architectures. Structural modeling is

essentially a method to combine an existing set of VHDL models. In other

words, structural modeling supports the interconnection of black boxes

but does not have the ability to describe the logic functions used to model

52 Chapter 5: Standard Models in VHDL Architectures

the circuit operation. For this reason, it is less of a design method and

more of an approach for interfacing previously designed modules.

The reason we choose to slip the discussion of the different architectures

at this point is that you already have some familiarity with one of the

styles. Up to this point, all of our circuits have been implemented using

the data-flow style. We are now at the point of talking about the beha-

vioral style of architectures which is primarily centered around another

concurrent statement known as the process statement. If it seems con-

fusing, some of the confusion should go away once we start dealing with

actual circuits and real VHDL code.

5.1 Data-flow Style Architecture

A data-flow style architecture specifies a circuit as a concurrent represent-

ation of the flow of data through the circuit. In the data-flow approach, cir-

cuits are described by showing the input and output relationships between

the various built-in components of the VHDL language. The built-in com-

ponents of VHDL include operators such as AND, OR, XOR, etc. The

three forms of concurrent statements we have talked about up until now

(concurrent signal assignment, conditional signal assignment and selected

signal assignment) are all statements that are found in data-flow style ar-

chitectures. In other words, if you exclusively used concurrent, conditional

and selected signal assignment statement in your VHDL models, you have

used a data-flow model. If you were to re-examine some of the examples

we have done so far, you can in fact sort of see how the data flows through

the circuit. To put this in other words, if you have a working knowledge of

digital logic, it is fairly straightforward to imagine the underlying circuitry

in terms of standard logic gates. These signal assignment statements ef-

fectively describe how the data flows from the signals on the right-hand

side of the assignment operator (the “<=”) to the signal on the left-hand

side of the operator.

The data-flow style of architecture has its strong points and weak points.

It is good that you can see the flow of data in the circuit by examining the

VHDL code. The data-flow models also allow you to make an intelligent

guess as to how the actual logic will appear when you decide to synthesize

5.2 Behavioral Style Architecture 53

the circuit. Data-flow modeling works fine for small and relatively simple

circuits. But as circuits become more complicated, it is often advantageous

to switch to behavioral style models.

5.2 Behavioral Style Architecture

In comparison to the data-flow style architecture, the behavioral style

architecture provides no details as to how the design is implemented in

actual hardware. VHDL code written in a behavioral style does not ne-

cessarily reflect how the circuit is implemented when it is synthesized.

Instead, the behavioral style models how the circuit outputs will react

to the circuit inputs. Whereas in data-flow modeling you somewhat need

to have a feel for the underlying logic in the circuit, behavioral models

provide you with various tools to describe how the circuit will behave and

leave the implementation details up to the synthesis tool. In other words,

data-flow modeling describes how the circuit should look in terms of logic

gates whereas behavioral modeling describes how the circuit should be-

have. For these reasons, behavioral modeling is considered higher up on

the circuit abstraction level as compared to data-flow models. It is the

VHDL synthesizer tool that decides the actual circuit implementation. In

one sense, behavioral style modeling is the ultimate “black box” approach

to designing circuits.

The heart of the behavioral style architecture is the process statement.

This is the fourth type of concurrent statement that we will work with.

As you will see, the process statement is significantly different from the

other three concurrent statements in several ways. The major difference

lies in the process statement’s approach to concurrency, which is the major

sticking point when you deal with this new concurrent statement.

5.3 Process Statement

The process statement itself is a concurrent statement identified by its

label, its sensitivity list, a declaration area and a begin-end area containing

instructions executed sequentially. An example of the process statement

is shown in Listing 5.1.

The main point to remember about the process statement is that its

54 Chapter 5: Standard Models in VHDL Architectures

Listing 5.1: Syntax for the process statement.

-- this is my first process
my_label: process(sensitivity_list) is

<item_declaration>
begin

<sequential_statements>
end process my_label;

body is constituted of sequential statements. The main difference between

concurrent signal assignment statements and process statements lies with

these sequential statements. But once again, let us stick to the similarities

before we dive into the differences. The process label, listed in Listing 5.1

is optional but should always be included to promote the self-description

of your VHDL code.

Listings 5.2 and 5.3 show a data-flow architecture and a behavioral style

architecture for the same XOR entity. The main difference between the

two architectures is the presence of the process statement in the listed

code.

Let us remember that the concurrent signal assignment statement in the

data-flow description operates as follows. Since it is a concurrent state-

ment, any time there is a change in any of the signals listed on the right-

hand side of the signal assignment operator, the signal on the left-hand

side of the operator is re-evaluated. For the behavioral architecture de-

scription, any time there is a change in signals in the process sensitivity

list, all of the sequential statements in the process are re-evaluated. Evalu-

ation of the process statement is controlled by the signals that are placed

in the process sensitivity list. These two approaches are effectively the

same except the syntax is significantly different.

So here is where it gets strange. Even though both of the architectures

listed in 5.2 and 5.3 have the exact same signal assignment statement

(F <= A XOR B;), execution of the statement in the behavioral style

architecture is controlled by which signals appear in the process sensitivity

list. The statement appearing in the data-flow model is re-evaluated any

time there is a change in signal A or in the signal B. This is a functional

difference rather than a cosmetic difference.

5.4 Sequential Statements 55

Listing 5.2: Data-flow architecture.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_xor is
port (A,B : in std_logic;

F : out std_logic);
end my_xor;
-- architecture
architecture dataflow of my_xor is
begin

F <= A XOR B;
end dataflow;
--
--
--

Listing 5.3: Behavioral architecture.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_xor is
port (A,B : in std_logic;

F : out std_logic);
end my_xor;
-- architecture
architecture behav of my_xor is
begin
xor_proc: process(A,B) is
begin

F <= A XOR B;
end process xor_proc;

end behav;

The process statement should be considered a way the programmer has

at his disposal to execute a series of sequential statements (i.e. in a behavi-

oral manner); never forget that the process statement is itself a concurrent

statement; therefore when you place two processes inside the architecture

body, their execution will be concurrent.

In Listing 5.4, you can see what a complete process statement looks like.

Remember that all variables defined inside the process body will only

be visible within the process body itself. Furthermore, notice that the

statement at line 24 is placed inside the architecture body but outside

the process body; therefore its execution happens concurrently with the

process statement.

5.4 Sequential Statements

Now that we have the process statement at our disposal, we have a way

to execute some code in a sequential manner.

Within a process, the execution of the sequential statements is initiated

when a change in the signal contained in the process sensitivity list occurs.

Generally speaking, execution of statements within the process body con-

tinues until the end of the process body is reached. The strangeness evokes

a philosophical dilemma: the process statement is a concurrent statement

yet it is made of sequential statements. This is actually a tough concept

to grasp. After years of contemplation, I am only starting to grasp the

reality of this strange contradiction.

The key to understand sequential evaluation of statements occurring in

56 Chapter 5: Standard Models in VHDL Architectures

Listing 5.4: Use of the process statement.

1 -- library declaration
2 library IEEE;
3 use IEEE.std_logic_1164.all;
4 -- entity
5 entity my_system is
6 port (A,B,C : in std_logic;
7 F,Q : out std_logic);
8 end my_system;
9 -- architecture

10 architecture behav of my_system is
11 signal A1 : std_logic;
12 begin
13 some_proc: process(A,B,C) is
14 variable a,b : integer;
15 begin
16 a:=74;
17 b:=67;
18 A1 <= A and B and C;
19 if a>b then
20 F <= A1 or B;
21 end if;
22 end process some_proc;
23 -- we are outside the process body
24 Q <= not A;
25 end behav;

a concurrent statement remains hidden in the interpretation of VHDL

code by the synthesizer. And since the ins and outs of this interpreta-

tion are not always readily apparent, some implementation details must

be taken for granted until the time comes when you really need to fully

understand the process. The solution is to keep your process statements

as simple as possible. The tendency is to use the process statement as a

repository for a bunch of loosely-related sequential statements. Although

syntactically correct, the code is not intelligible (understandable) in the

context of digital circuit generation. You should strive to keep your pro-

cess statements simple. Divide up your intended functionality into several

process statements that communicate with each other rather than one

giant, complicated, bizarre process statement. Remember, process state-

ments are concurrent statements: they all can be executed concurrently.

Try to take advantage of this feature in order to simplify your circuit

descriptions.

There are three types of sequential statements that we will be discussing.

The first one is the signal assignment statement: the “<=”. We will

not say too much about the first type though because we have already

5.4 Sequential Statements 57

been dealing with its analogue in the data-flow models. The other two

types of statements are the if statement and the case statement. The

nice part about all of these statements is that you have worked with them

before in algorithmic programming languages. The structure and function

of the VHDL if and case statements is strikingly similar. Keep this in

mind when you read the descriptions that follow.

5.4.1 Signal Assignment Statement

The sequential style of a signal assignment statement is syntactically equi-

valent to the concurrent signal assignment statement. Another way to look

at it is that if a signal assignment statement appears inside of a process

then it is a sequential statement; otherwise, it is a concurrent signal as-

signment statement. To drive the point home, the signal assignment state-

ment “F <= A XOR B;” in the data-flow style architecture of Listing 5.2

is a concurrent signal assignment statement while the same statement in

the behavioral style architecture, Listing 5.3, is a sequential signal assign-

ment statement. The functional differences were already covered in the

discussion regarding process statements.

5.4.2 if Statement

The if statement is used to create a branch in the execution flow of the

sequential statements. Depending on the conditions listed in the body of

the if statement, either the instructions associated with one or none of

the branches is executed when the if statement is processed. The general

form of the if statement is shown in Listing 5.5.

Listing 5.5: Syntax of the if statement.

if (condition) then
<statements>

elsif (condition) then
<statements>

else
<statements>

end if;

The concept of the if statement should be familiar to you in two re-

gards. First, its form and function are similar to the if-genre of statements

found in most algorithmic programming languages. The syntax, however,

is a bit different. Secondly, the VHDL if statement is the sequential equi-

58 Chapter 5: Standard Models in VHDL Architectures

valent to the VHDL conditional signal assignment statement. These two

statements essentially do the same thing but the if statement is a

sequential statement found inside a process body while the con-

ditional signal assignment statement is one form of concurrent

signal assignment.

Yet again, there are a couple of interesting things to note about the

listed syntax of the if statement.

• The parentheses placed around the condition expressions are optional.

They should be included in most cases to increase the readability of

the VHDL source code.

• Each if-type statement contains an associated then keyword. The

final else clause does not have the then keyword associated with it.

• As written in Listing 5.5, the else clause is a catch-all statement. If

none of the previous conditions is evaluated as true, then the sequence

of statements associated with the final else clause is executed. The

way the if statement is shown in Listing 5.5 guarantees that at least

one of the listed sequence of statements will be executed.

• The final else clause is optional. Not including the final else clause

presents the possibility that none of the sequence of statements asso-

ciated with the if statement will be evaluated. This has deep ramific-

ations that we will discuss later.

Let us see now some examples that will help us to better understand how

to use the if statement.

EXAMPLE 9. Write some VHDL code using an if statement that

implements the following logic function: F OUT (A,B,C) = ABC+BC

SOLUTION. Although it is not directly stated in the problem descrip-

tion, the VHDL code for this solution must use a behavioral architecture.

This is because the problem states that an if statement should be used.

The VHDL code for the solution is shown in Listing 5.6. We have opted

to leave out the black-box diagram in this case since the problem is relat-

ively simple and thus does not really demonstrate the power of behavioral

modeling.

5.4 Sequential Statements 59

Listing 5.6: Solution to Example 9.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_ex is
port (A,B,C : in std_logic;

F_OUT : out std_logic);
end my_ex;
-- architecture
architecture silly_example of my_ex is
begin

proc1: process(A,B,C) is
begin

if (A = '1' and B = '0' and C = '0') then
F_OUT <= '1';

elsif (B = '1' and C = '1') then
F_OUT <= '1';

else
F_OUT <= '0';

end if;
end process proc1;

end silly_example;

This is probably not the best way to implement a logic function but it

does show an if statement in action. An alternate architecture for the

solution of Example 9 is shown in Listing 5.7.

Listing 5.7: Alternative solution to Example 9.

-- architecture
architecture bad_example of my_ex_7 is
begin

proc1: process(A,B,C)
begin

if (A='1' and B='0' and C='0') or (B='1' and C='1') then
F_OUT <= '1';

else
F_OUT <= '0';

end if;
end process proc1;

end bad_example;

One final comment on process statements. Process statements can be

preceded with an optional label. A label should always be included with

process statements as a form of self-description. This of course means

that the label should be meaningful in terms of describing the purpose of

the process statement. Providing good label names is somewhat of an art

form but keep in mind that it is easier to provide a meaningful name to

a process that is not trying to do too much. A more intelligent use of the

if statement is demonstrated in the next example.

60 Chapter 5: Standard Models in VHDL Architectures

EXAMPLE 10. Write some

VHDL code that implements

the 8:1 MUX shown below.

Use an if statement in your

implementation.

mux 8t1

Data in 8
/

SEL 3
/

F CTRL

SOLUTION. The solution to Example 10 is shown in Listing 5.8.

Listing 5.8: Solution to Example 10.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity mux_8t1 is

port (Data_in : in std_logic_vector (7 downto 0);
SEL : in std_logic_vector (2 downto 0);

F_CTRL : out std_logic);
end mux_8t1;
-- architecture
architecture mux_8t1_arc of mux_8t1 is
begin

my_mux: process (Data_in,SEL)
begin

if (SEL = "111") then F_CTRL <= Data_in(7);
elsif (SEL = "110") then F_CTRL <= Data_in(6);
elsif (SEL = "101") then F_CTRL <= Data_in(5);
elsif (SEL = "100") then F_CTRL <= Data_in(4);
elsif (SEL = "011") then F_CTRL <= Data_in(3);
elsif (SEL = "010") then F_CTRL <= Data_in(2);
elsif (SEL = "001") then F_CTRL <= Data_in(1);
elsif (SEL = "000") then F_CTRL <= Data_in(0);
else F_CTRL <= '0';
end if;

end process my_mux;
end mux_8t1_arc;

The solution to Example 10 shown in Listing 5.8 uses some new syntax.

The entity uses bundle signals, but the associated architecture needs to

access individual elements of these bundles. The solution is to use the bus

index operator to access internal signals of the bus. This is done via the use

of a number representing an index placed inside parentheses (for example

Data in(7)). Bus index operators are used extensively in VHDL and

were previously mentioned. The solution to Example 10 shows a more

typical use of the operator than was previously mentioned.

One other thing to notice about the solution in Example 10 is that every

possible combination of the select variable is accounted for in the code.

It would be possible to remove the final elsif statement in the code

5.4 Sequential Statements 61

shown in Listing 5.8 and place the associated signal assignment in the

else clause. But this is not considered good VHDL practice and should

be avoided at all costs. The justification for this is that it will modify the

readability of the code but not alter the hardware generated by the code.

EXAMPLE 11. Write some VHDL

code that implements the 8:1 MUX

shown here. Use as many if state-

ments as you deem necessary to im-

plement your design. In the black-

box diagram, the CE input is a chip

enable. When CE = ’1’, the output

acts like the MUX of Example 10.

When CE is ’0’, the output of the

MUX is ’0’.

mux 8to1

Data in 8
/

SEL 3
/

CE

F CTRL

SOLUTION. The solution to Example 11 is strangely similar to the

solution of Example 10. Note that in this solution the if statements can

be nested to attain various effects. The solution to Example 11 is shown

in Listing 5.9.

62 Chapter 5: Standard Models in VHDL Architectures

Listing 5.9: Solution to Example 11.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity mux_8to1_ce is

port (Data_in : in std_logic_vector (7 downto 0);
SEL : in std_logic_vector (2 downto 0);
CE : in std_logic;

F_CTRL : out std_logic);
end mux_8to1_ce;
-- architecture
architecture mux_8to1_ce_arch of mux_8to1_ce is
begin

my_mux: process (Data_in,SEL,CE)
begin

if (CE = '0') then
F_CTRL <= '0';

else
if (SEL = "111") then F_CTRL <= Data_in(7);
elsif (SEL = "110") then F_CTRL <= Data_in(6);
elsif (SEL = "101") then F_CTRL <= Data_in(5);
elsif (SEL = "100") then F_CTRL <= Data_in(4);
elsif (SEL = "011") then F_CTRL <= Data_in(3);
elsif (SEL = "010") then F_CTRL <= Data_in(2);
elsif (SEL = "001") then F_CTRL <= Data_in(1);
elsif (SEL = "000") then F_CTRL <= Data_in(0);
else F_CTRL <= '0';
end if;

end if;
end process my_mux;

end mux_8to1_ce_arch;

5.4.3 case Statement

The case statement is somewhat similar to the if statement in that

a sequence of statements is executed if an associated expression is true.

The case statement differs from the if statement in that the resulting

choice is made depending upon the value of the single control expression.

Only one set of sequential statements is executed for each execution of

the case statement. The statements executed are determined by the first

when branch to evaluate as true. The syntax for the case statement is

shown in Listing 5.10.

Listing 5.10: Syntax for the case statement.

case (expression) is
when choices =>

<sequential statements>
when choices =>

<sequential statements>
when others =>

<sequential statements>
end case;

5.4 Sequential Statements 63

Once again, the concept of the case statement should be familiar to you

in several regards. Firstly, it can generally be viewed as a compact form of

the if statement. It is not as functional, however, for the reason described

above. Secondly, the case statement is similar in both form and function

to the case statement or the switch statement in other algorithmic

programming languages. And finally, the VHDL case statement is the

sequential equivalent of the VHDL selected signal assignment statement.

These two statements essentially have the same capabilities but the case

statement is a sequential statement found in a process body while the

selected signal assignment statement is one form of concurrent signal as-

signment. The when others line is not required but should be used as

good programming practice.

EXAMPLE 12. Write some VHDL code that implements the follow-

ing function using the case statement: F OUT (A,B,C) = ABC+BC

SOLUTION. This solution falls into the category of not being the best

way to implement a circuit using VHDL. It does, however, illustrate an-

other useful feature in the VHDL. The first part of this solution requires

that we list the function as a sum of minterms. This is done by multiplying

the non-minterm product term given in the example by 1. In this case, 1

is equivalent to (A + A). This factoring operation is shown as:

F OUT (A,B,C) = ABC + BC

F OUT (A,B,C) = ABC + BC(A + A)

F OUT (A,B,C) = ABC + ABC + ABC

The solution is shown in Listing 5.11. An interesting feature of this

solution is the grouping of the three input signals which allows the use of a

case statement in the solution. This approach requires the declaration of

an intermediate signal which is appropriately labeled “ABC”. Once again,

this is probably not the most efficient method to implement a function but

it does highlight the need to be resourceful and creative when describing

the behavior of digital circuits.

64 Chapter 5: Standard Models in VHDL Architectures

Listing 5.11: Solution to Example 12.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_example is
port (A,B,C : in std_logic;

F_OUT : out std_logic);
end my_example;
-- architecture
architecture my_soln_exam of my_example is

signal ABC: std_logic_vector(2 downto 0);
begin

ABC <= A & B & C; -- group signals for case statement
my_proc: process (ABC)
begin

case (ABC) is
when "100" => F_OUT <= '1';
when "011" => F_OUT <= '1';
when "111" => F_OUT <= '1';
when others => F_OUT <= '0';
end case;

end process my_proc;
end my_soln_exam;

Another similar approach to Example 12 is to use the don’t care feature

built into VHDL. This allows the logic function to be implemented without

having to massage the inputs. As with everything, if you have to modify

the problem before you arrive at the solution, you stand a finite chance of

creating an error that would not have otherwise been created if you had

not taken a more clever approach. A different architecture for the solution

of Example 12 is shown in Listing 5.12. One possible drawback of using a

don’t care feature in your VHDL code is that some synthesizers and some

simulators do not handle it very well. I would avoid them at all costs and

seek a more definitive method of modeling the circuits I am dealing with.

Listing 5.12: Alternative solution to Example 12.

architecture my_soln_exam2 of my_example is
signal ABC: std_logic_vector(2 downto 0);

begin
ABC <= A & B & C; -- group signals for case statement
my_proc: process (ABC)
begin

case (ABC) is
when "100" => F_OUT <= '1';
when "-11" => F_OUT <= '1';
when others => F_OUT <= '0';
end case;

end process my_proc;
end my_soln_exam2;

One of the main points that should be emphasized in any VHDL program

is readability. In the next problem, we will redo Example 11 using a case

5.4 Sequential Statements 65

statement instead of if statements.

EXAMPLE 13. Write some

VHDL code that implements the

8:1 MUX shown below. Use a case

statement in your design. In the

black-box diagram shown below,

the CE input is a chip enable.

When CE = ’1’, the output acts

like the MUX of Example 10. When

CE is ’0’, the output of the MUX

is ’0’.

mux 8to1

Data in 8
/

SEL 3
/

CE

F CTRL

SOLUTION. This solution to Example 13 is shown in Listing 5.13. The

entity declaration is repeated below for your convenience. This solution

places the case statement in the body of an if construct. In case you

have not noticed it yet, the number of possible solutions to a given problem

increases as the circuits you are implementing become more complex.

66 Chapter 5: Standard Models in VHDL Architectures

Listing 5.13: Solution to Example 13.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity mux_8to1_ce is

port (Data_in : in std_logic_vector (7 downto 0);
SEL : in std_logic_vector (2 downto 0);
CE : in std_logic;

F_CTRL : out std_logic);
end mux_8to1_ce;
-- architecture
architecture my_case_ex of mux_8to1_ce is
begin

my_mux: process (SEL,Data_in,CE)
begin

if (CE = '1') then
case (SEL) is

when "000" => F_CTRL <= Data_in(0);
when "001" => F_CTRL <= Data_in(1);
when "010" => F_CTRL <= Data_in(2);
when "011" => F_CTRL <= Data_in(3);
when "100" => F_CTRL <= Data_in(4);
when "101" => F_CTRL <= Data_in(5);
when "110" => F_CTRL <= Data_in(6);
when "111" => F_CTRL <= Data_in(7);
when others => F_CTRL <= '0';

end case;
else

F_CTRL <= '0';
end if;

end process my_mux;
end my_case_ex;

One very important point in the solution to Example 13 is the fact that

a case statement was embedded into an if statement. The technical

term for this style of coding is, as you would guess, nesting. Nesting se-

quential statements is typical in behavioral models and is used often. This

is actually one of the features that make behavioral modeling so much

more powerful than data-flow modeling. The reality is that conditional

and selective signal assignment statements cannot be nested.

5.5 Caveats Regarding Sequential Statements

As you begin to work with sequential statements, you tend to start getting

the feeling that you are doing algorithmic programming using a higher-

level language. This is due to the fact that sequential statements have a

similar look and feel to some of the programming constructs in higher-level

languages. The bad part of this tendency is when and if your VHDL cod-

ing approach becomes similar to that of the higher-level language. Since

5.5 Caveats Regarding Sequential Statements 67

this happens very often with people who are learning VHDL, it is appro-

priate to remind once again that VHDL is not programming: VHDL

is hardware design. You are, generally speaking, not implementing al-

gorithms in VHDL, you are describing hardware: this is a totally different

paradigm.

It is not uncommon to see many, not so good, pieces of VHDL code

that attempt to use a single process statement in order to implement a

relatively complex circuit. Although the code appears like it should work

in terms of the provided statements, this is an illusion based on the fact

that your mind is interpreting the statements in terms of a higher-level

language. The reality is that VHDL is somewhat mysterious in that you

are trusting the VHDL synthesizer to magically know what you are trying

to describe. If you do not understand the ins and outs of VHDL at a

low level, your circuit is not going to synthesize properly. Most likely

you understand simple VHDL behavioral models. But once the models

become complex, your understanding quickly fades away. The solution to

this problem is really simple: keep your VHDL models simple, particularly

your process statements.

In VHDL, the best approach is to keep your process statements centered

around a single function and have several process statements that com-

municate with each other. The bad approach is to have one big process

statement that does everything for you. The magic of VHDL is that if

you provide simple code to the synthesizer, it is more than likely going to

provide you with a circuit that works and with an implementation that

is simple and eloquent. If you provide the synthesizer with complicated

VHDL code, the final circuit may work and may even be efficient in both

speed and real estate, but probably not. As opposed to higher-level lan-

guages where small amounts of code often translate directly to code of

relatively high efficiency, efficiency in VHDL code is obtained by compact

and simple partitioning of the VHDL code based on the underlying hard-

ware constructs. In other words, simple VHDL models are better but the

simplicity is generally obtained by proper partitioning and description of

the model. So try to fight off the urge to impress your friends with the

world’s shortest VHDL model; your hardware friends will know better.

68 Chapter 5: Standard Models in VHDL Architectures

5.6 Summary

Let us now review some of the important concepts that have been intro-

duced in this chapter.

• The three main flavors of VHDL modeling styles include data-flow,

behavioral and structural models.

• VHDL behavioral models, by definition, use process statements.

• VHDL data-flow models by definition use concurrent signal assign-

ment, conditional signal assignment and/or selected signal assignment.

• The process statement is a concurrent statement. Statements appear-

ing within the process statement are sequential statements.

• The if statement has a direct analogy to the conditional signal as-

signment statement used in data-flow modeling.

• The case statement has a direct analogy to the selected signal assign-

ment statement used in data-flow modeling.

• Both the case statement and the if statement can be nested. Con-

current, conditional and selected signal assignment statements

cannot be nested.

• The simplest concurrent statement is the concurrent signal assignment

statement (e.g. “F <= A;”). Its sequential equivalent is the sequential

signal assignment statement and it looks identical.

5.7 Exercises: Behavioral Modeling

1. For the following function, write VHDL behavioral models that im-

plement these functions using both case statements and if state-

ments (two separate models for each function).

a) F (A,B) = AB + A + AB

b) F (A,B,C,D) = ACD + BC + BCD

c) F (A,B,C,D) = (A + B) · (B + C + D) · (A + D)

d) F (A,B,C) =
∏

(5, 1, 4, 3)

5.7 Exercises: Behavioral Modeling 69

e) F (A,B,C,D) =
∑

(1, 2)

2. For the circuit below, write the VHDL behavioral model that im-

plements it using both case statements and if statements (two

separate models).

CD

B

A

E E out

A 1
A 2

B 1
B 2

D 1

3. Model the previous circuit using concurrent, conditional, or selected

signal assignment.

4. Provide a VHDL model of an 8-input AND gate using a process

statement.

5. Provide a VHDL model of an 8-input OR gate using a process state-

ment.

6. Provide a VHDL model of an 8:1 MUX using a process statement.

Include a model that uses if statements and case statements (two

separate models).

7. Provide a VHDL model of a 3:8 decoder using a process statement.

Include a model that uses if statements and case statements (two

separate models). Consider the outputs to be active low.

6
VHDL Operators

So far we have only implicitly mentioned the operators available in VHDL.

This section presents a complete list of operators as well as a few examples

of their use. A complete list of operators is shown in Table 6.1. This

is followed by brief descriptions of some of the less obvious operators.

Although you may not have an immediate need to use some of these

operators, you should be aware that they exist. And although there are

some special things you should know about some of these operators, not

too much information is presented in this section.

Operators in VHDL are grouped into seven different types: logical, re-

lational, shift, addition, unary, multiplying and others. The ordering of

this operator list is somewhat important because it presents the operators

in the order of precedence. We said somewhat because your VHDL code

should never rely on operator precedence to describe circuit behavior. Re-

Operator type

exponential, absolute value ** abs

logical and or nand nor xor xnor not

multip., division, module, remainer * / mod rem

addition, subtraction + −
identity, negation + −
concatenate, shift, rotate & sll srl sla sra rol ror

relational = /= < <= > >=

Table 6.1: VHDL operators.

72 Chapter 6: VHDL Operators

Operator Name Explanation

= equivalence is some value equivalent to some other value?

/ = non-equivalence is some value not equivalent to some other value?

< less than is some value less than some other value?

<= less than or equal is some value less than or equal to some other value?

> greater than is some value greater than some other value?

>= greater than or equal is some value greater than or equal to some other value?

Table 6.2: VHDL relational operators with brief explanations.

liance on obscure precedence rules tends to make the VHDL code cryptic

and hard to understand. A liberal use of parentheses is a better approach

to VHDL coding.

The first column of Table 6.1 lists the operators in precedence order with

the logical operators having the highest precedence. Although there is a

precedence order in the types of operators, there is no precedence order

within each type of operator. In other words, the operators appearing

in the rows are presented in no particular order. This means that the

operators are applied to the given operands in the order they appear in

the associated VHDL code.

6.1 Logical Operators

The logical operators are generally self-explanatory in nature. They have

also been used throughout this book. The only thing worthy to note here is

that the not operator has been included in the group of logical operators

despite the fact that it is not technically a logic operation.

6.2 Relational Operators

The relational operators are generally self-explanatory in nature too. Many

of them have been used in this book. A complete list of relational operators

is provided in Table 6.2.

6.3 Shift Operator

Available from ieee.numeric std or ieee.numeric bit, there are

three types of shift operators: logical shift, arithmetic shift and rotations.

6.4 Other Operators 73

Operator Name Example Result

logical
sll shift left logical result <= ”10010101” sll 2 ”01010100”

srl shift right logical result <= ”10010101” srl 3 ”00010010”

arithmetic
sla shift left arithmetic result <= ”10010101” sla 3 ”10101111”

sra shift right arithmetic result <= ”10010101” sra 2 ”11100101”

rotate
rol rotate left result <= ”101000” rol 2 ”100010”

ror rotate right result <= ”101001” ror 2 ”011010”

Table 6.3: VHDL shift operators with examples.

Although these operators basically shift bits either left-to-right or right-

to-left, there are a few basic differences which are listed below. The shift

operators are listed in Table 6.3.

• Both logical shifts introduce zeros into one end of the operand that

is affected by the shift operation. In other words, zeros are fed into

one end of the operand while bits are essentially lost from the other

end. The difference between logical and arithmetic shifts is that in

arithmetic shift, the sign-bit is never changed and the bit that is fed

into one end can differ. Hence, for arithmetic shift lefts, the last right

bit is stuffed to the right end of the operand. For arithmetic shift

rights, the sign-bit (the left-most bit) is propagated right (the value of

the left-most bit is fed into the left end of the operand).

• Rotate operators grab a bit from one end of the word and stuff it into

the other end. This operation is done independently of the value of the

individual bits in the operand.

6.4 Other Operators

The other groups of operators are generally used with numeric types. Since

this section does not present numerical operations in detail, the operators

are briefly listed below in Table 6.4. Special attention is given to the mod,

rem and & operators. These operators are also limited to operating on

specific types which are also not listed here.

74 Chapter 6: VHDL Operators

6.5 Concatenation Operator

The concatenation operator & is often a useful operator when dealing with

digital circuits. There are many times when you will find a need to tack

together two separate values. The concatenation operator has been seen

in some previous example solutions. Some more examples of the concat-

enation operators are presented in Listing 6.1.

Listing 6.1: Examples of the concatenation operator.

signal A_val, B_val : std_logic_vector(3 downto 0);
signal C_val : std_logic_vector(5 downto 0);
signal D_val : std_logic_vector(7 downto 0);

C_val <= A_val & "00";
C_val <= "11" & B_val;
C_val <= '1' & A_val & '0';
D_val <= "0001" & C_val(3 downto 0);
D_val <= A_val & B_val;

6.6 Modulus and Remainder Operators

Both the remainder operator rem and the modulus operator mod are ap-

plied to integers types and both give back an integer type. There is often

confusion about the differences between the two operators and the differ-

ence in their operation on negative and positive numbers. The definitions

that VHDL uses for these operators are shown in Table 6.5 while a few

examples of these operators are provided in Table 6.6. A general rule fol-

Operator Name Comment

addition
+ addition

- subtraction

unary
+ identity

- negation

multiplying

* multiplication

/ division often limited to powers of two

mod modulus can operate only on specific types

rem remainder can operate only on specific types

other

** exponentiation often limited to powers of two

abs absolute value

& concatenation can operate only on specific types

Table 6.4: All the other VHDL operators not listed so far.

6.7 Review of Almost Everything Up to Now 75

Operator Name Satisfies this Conditions Comment

rem remainder 1. sign of (X rem Y) is the same as X

2. abs (X rem Y) < abs (Y) abs = absolute value

3. (X rem Y) = (X - (X / Y) * Y)

mod modulus 1. sign of (X mod Y) is the same as Y

2. abs (X mod Y) < abs (Y) abs = absolute value

3. (X mod Y) = (X * (Y - N))

for some integer N

Table 6.5: Definitions of rem and mod operators.

lowed by many programmers is to avoid using the mod operator when

dealing with negative numbers. As you can see from the examples below,

answers are sometime counter-intuitive.

6.7 Review of Almost Everything Up to Now

VHDL is a language used to design, test and implement digital circuits.

The basic design units in VHDL are the entity and the architecture which

exemplify the general hierarchical approach of VHDL. The entity repres-

ents the black-box diagram of the circuit or the interface of the circuit to

the outside world while the architecture encompasses all the other details

of how the circuit behaves.

The VHDL architecture is made of statements that describe the behavior

of the digital circuit. Because this is a hardware description language,

statements in VHDL are primarily considered to execute concurrently.

The idea of concurrency is one of the main themes of VHDL as one would

expect since a digital circuit can be modeled as a set of logic gates that

operate concurrently.

The main concurrent statement types in VHDL are the concurrent signal

rem mod

8 rem 5 = 3 8 mod 5 = 3

-8 rem 5 = -3 -8 mod 5 = 2

8 rem -5 = 3 8 mod -5 = -2

-8 rem -5 = -3 -8 mod -5 = -3

Table 6.6: Example of rem and mod operators.

76 Chapter 6: VHDL Operators

assignment statement, the conditional signal assignment statement, the

selected signal assignment statement and the process statement. The pro-

cess statement is a concurrent statement which is constituted of sequential

statements exclusively. The main types of sequential statements are the

signal assignment statement, the if statement and the case statement.

The if statement is a sequential version of conditional signal assignment

statement while the case statement is a sequential version of the selected

signal assignment statement. The syntax of these statements and examples

are given in the following table.

Coding styles in VHDL fall under the category of data-flow, behavioral

and structural models. Exclusive use of process statements indicates a

behavioral model. The use of concurrent, conditional and selective signal

assignment indicate the use of a data-flow model. VHDL code describing

more complex digital circuits will generally contain both features of all of

these types of modeling.

Since you should make no effort whatsoever to memorize VHDL syntax,

it is recommended that a cheat sheet always be kept next to you as you

perform VHDL modeling. Developing a true understanding of VHDL is

what is going to make you into a good hardware designer. The ability to

memorize VHDL syntax proves almost nothing.

6.8 Using VHDL for Sequential Circuits

All the circuits we have examined up until now have been combinatorial

logic circuits. In other words, none of the circuits we have examined so

far are actually able to store information. This section shows some of

the various methods used to describe sequential circuits. We limit our

discussion to VHDL behavioral models for several different flavors of D

flip-flops. It is possible and in some cases desirable to use data-flow models

to describe storage elements in VHDL, but it is much easier to use behavior

models.

The few approaches for designing flip-flops shown in the next section

cover just about all the possible functionality you could imagine when

you make use of a D flip-flop. Once you understand these basics, you will

be on your way to understand how to use VHDL to design Finite State

6.9 Simple Storage Elements Using VHDL 77

Machines (FSMs). This book will examine FSMs in a later chapter.

6.9 Simple Storage Elements Using VHDL

The general approach for learning how to implement storage elements in

digital design is to study the properties of a basic cross-coupled cell. The

cross coupled cell forms what is referred to as a latch. The concept of a

clocking signal is added to the device in order to enhance its controllability.

Finally, some type of pulse narrowing circuitry is added to the clocking

signal to get to the flip-flop. The flip-flop is nothing more than an edge-

sensitive bit-storage device.

The study of a VHDL implementation of storage elements starts with

the edge-triggered D flip-flop. The VHDL examples presented are the basic

edge-triggered D flip-flop with an assortment of added functionality.

EXAMPLE 14. Write the VHDL

code that describes a D flip-flop

shown on the right. Use a behavi-

oral model in your description.

d ff

D

CLK

Q

SOLUTION. The solution to Example 14 is shown in Listing 6.2. Listed

below are a few interesting things to note about the solution.

• The given architecture body describes the my d ff version of the d ff

entity.

• Because this example requires the use of a behavioral model, the archi-

tecture body includes primarily a process statement. The statements

within the process are executed sequentially. The process is executed

each time a change is detected in any of the signals in the process’ sens-

itivity list. In this case, the statements within the process are executed

each time there is a change in logic level of the CLK signal.

• The rising edge() construct is used in the if statement to indicate

that changes in the circuit output happen only on the rising edge of the

CLK input. The rising edge() construct is actually an example of a

VHDL function which has been defined in one of the included libraries.

78 Chapter 6: VHDL Operators

The way the VHDL code has been written makes the whole circuit

synchronous; in fact, changes in the circuit’s output are synchronized

with the rising edge of the clock signal. In this case, the action is a

transfer of the logic level on the D input to the Q output.

• The functionality of rising edge(CLK) can be achieved using the

quite popular VHDL “event” attribute via the construct:

CLK’event and CLK=’1’.

Please keep this in mind.

• The process has the label dff. This is not required by the VHDL

language but the addition of process labels promotes a self-describing

nature of the code and increases its readability and understandability.

Listing 6.2: Solution to Example 14.

-- Model of a simple D Flip-Flop --

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity d_ff is

port (D, CLK : in std_logic;
Q : out std_logic);

end d_ff;
-- architecture
architecture my_d_ff of d_ff is
begin

dff: process(CLK)
begin

if (rising_edge(CLK)) then
--or if (CLK'event and CLK='1') then

Q <= D;
end if;

end process dff;
end my_d_ff;

The D flip-flop is best known and loved for its ability to store (save,

remember) a single bit. The way that the VHDL code in Listing 6.2 is

able to store a bit is not however obvious. The bit-storage capability in

VHDL is implied by the way the VHDL code is interpreted. The implied

storage capability comes about as a result of not providing a condition

that indicates what should happen if the listed if condition is not met.

In other words, if the if condition is not met, the device does not change

the value of Q and therefore it must remember the current value. The

memory feature of the current value, or state, constitutes the famous bit

6.9 Simple Storage Elements Using VHDL 79

storage quality of a flip-flop. If you have not specified what the output

should be for every possible set of input conditions, the option taken by

VHDL is to not change the current output. By definition, if the input

changes to an unspecified state, the output remains unchanged. In this

case, the output associated with the previous set of input can be thought

of as being remembered. It is this mechanism, as strange and interesting

as it is, that is used to induce memory in the VHDL code.

In terms of the D flip-flop shown in Example 14, the only time the

output is specified is for that delta time associated with the rising edge of

the clock. The typical method used to provide a catch-all condition in case

the if condition is not met is with an else clause. Generally speaking, a

quick way to tell if you have induced a memory element is to look for the

presence of an else clause associated with the if statement.

The previous two paragraphs are vastly important for understanding

VHDL; the concept of inducing memory in VHDL is very important to

digital circuit design. The design of sequential circuits is dependent on

this concept. This somewhat cryptic method used by VHDL to induce

memory elements is a byproduct of behavioral modeling based solely on

the interpretation of the VHDL source code. Even if you will only be using

VHDL to design combinatorial circuits, you will most likely be faced with

the comprehension of these concepts. One of the classic warnings generated

by the VHDL synthesizer is the notification that your VHDL code has

generated a latch. Despite the fact that this is only a warning, if you did

not intend to generate a latch, you should strive to modify your VHDL

code in such as way as to remove this warning. Assuming you did not

intend to generate a latch, the cause of your problem is that you have not

explicitly provided an output state for all the possible input conditions.

Because of this, your circuit will need to remember the previous output

state so that it can provide an output in the case where you have not

explicitly listed the current input condition.

80 Chapter 6: VHDL Operators

EXAMPLE 15. Write the VHDL

code that describes a D flip-flop

shown on the right. Use a behavi-

oral model in your description. Con-

sider the S input to be an active-

low, synchronous input that sets the

D flip-flop outputs when asserted.

d ff ns

D

CLK

S

Q

SOLUTION. The solution to Example 15 is shown in Listing 6.3. There

are a few things of interest regarding this solution.

• The S input to the flip-flop is made synchronous by only allowing it

to affect the operation of the flip-flop on the rising edge of the system

clock.

• On the rising edge of the clock, the S input takes precedence over the

D input because the state of the S input is checked prior to examining

the state of the D input. In an if-else statement, once one condition

evaluates as true, none of the other conditions is checked. In other

words, the D input is transferred to the output only the rising edge of

the clock and only if the S input is not asserted.

6.9 Simple Storage Elements Using VHDL 81

Listing 6.3: Solution to Example 15.

--
-- RET D Flip-flop model with active-low synchronous set input. --
--
-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity d_ff_ns is

port (D,S : in std_logic;
CLK : in std_logic;
Q : out std_logic);

end d_ff_ns;
-- architecture
architecture my_d_ff_ns of d_ff_ns is
begin

dff: process (CLK)
begin

if (rising_edge(CLK)) then
if (S = '0') then

Q <= '1';
else

Q <= D;
end if;

end if;
end process dff;

end my_d_ff_ns;

EXAMPLE 16. Write the VHDL

code that describes a D flip-flop

shown on the right. Use a behavi-

oral model in your description. Con-

sider the R input to be an active-

high, asynchronous input that re-

sets the D flip-flop outputs when as-

serted.

d ff r

D

CLK

R

Q

SOLUTION. The solution to Example 16 is shown in Listing 6.4. You

can probably glean the most information about asynchronous input and

synchronous inputs by comparing the solutions to Example 15 and Ex-

ample 16. A couple of interesting points are listed below.

• The reset input is independent of the clock and takes priority over the

clock. This prioritization is done by making the reset condition the

first condition in the if statement. Evaluation of the other conditions

continues if the R input does not evaluate to a ’1’.

• The falling edge() function is used to make the D flip-flop falling-

82 Chapter 6: VHDL Operators

edge-triggered. Once again, this function is defined in one of the in-

cluded libraries.

Listing 6.4: Solution to Example 16.

--
-- FET D Flip-flop model with active-high asynchronous reset input. --
--
-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity d_ff_r is

port (D,R : in std_logic;
CLK : in std_logic;
Q : out std_logic);

end d_ff_r;
-- architecture
architecture my_d_ff_r of d_ff_r is
begin

dff: process (R,CLK)
begin

if (R = '1') then
Q <= '0';

elsif (falling_edge(CLK)) then
Q <= D;

end if;
end process dff;

end my_d_ff_r;

The solutions of Example 15 and Example 16 represent what can be

considered the standard VHDL approaches to handling synchronous and

asynchronous inputs, respectively. The general forms of these solutions are

actually considered templates for synchronous and asynchronous inputs by

several VHDL references. As you will see later, these solutions form the

foundation to finite state machine design using VHDL.

EXAMPLE 17. Write the VHDL

code that describes a T flip-flop

shown on the right. Use a behavi-

oral model in your description. Con-

sider the S input to be an active-

low, asynchronous input that sets

the T flip-flop outputs when asser-

ted.

t ff s

T

CLK

S

Q

SOLUTION. The solution to Example 17 is shown in Listing 6.5. This

example has some very important techniques associated with it that are

well worth mentioning below.

6.9 Simple Storage Elements Using VHDL 83

• A unique quality of the D flip-flop is demonstrated in this implementa-

tion of a T flip-flop. The output of a D flip-flop is only dependent upon

the D input and is not a function of the present output of the flip-flop.

The output of a T flip-flop is dependent upon both the T input and

the current output of the flip-flop. This adds a certain amount of extra

complexity to the T flip-flop model as compared to the D flip-flop as

is shown in Listing 6.5. The T flip-flop model in Listing 6.5 uses a

temporary signal in order to use the current state of the flip-flop as in

input. In other words, since Q appears as a port to the entity it must

be assigned a mode specifier and in this case, it has been assigned

a mode specifier of “out”. Signals that are declared as outputs

can therefore not appear on the right-hand side of a signal

assignment operator. The standard approach to bypassing this ap-

parent limitation in VHDL is to use intermediate signals which,

as opposed to port signals, do not have mode specifications and can

thus be used as either inputs or outputs (can appear on both sides of

the signal assignment operator) in the body of the architecture. The

approach is to manipulate the intermediate signal in the body of the

architecture but to also use a concurrent signal assignment statement

to assign the intermediate signal to the appropriate output. Note that

in the key statement in the solution shown in 6.5 that the intermediate

signal appears on both sides of the signal assignment operator. This is

a widely used approach in VHDL: please take time to understand and

absorb it. And lastly on this note, there are other mode specifications

that would allow you a different approach to bypassing this problem

(namely, the use of the “buffer” mode specification), but you should

never use these in VHDL. The approach presented here is considered

a good use of VHDL.

• This code uses the characteristics equation of a T flip-flop in its im-

plementation. We technically used a characteristic equation when we

implemented the D flip-flop but since the characteristic equation of a

D flip-flop is relatively trivial, you may not have been aware of it.

• There are certain advantages to using T flip-flops in some conditions,

84 Chapter 6: VHDL Operators

D flip-flops are generally the storage element of choice using VHDL. If

you do not have a specific reason for using some type of flip-flop other

than a D flip-flop, you probably should not.

Listing 6.5: Solution to Example 17.

-- RET T Flip-flop model with active-low asynchronous set input. --

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity t_ff_s is

port (T,S,CLK : in std_logic;
Q : out std_logic);

end t_ff_s;
-- entity
architecture my_t_ff_s of t_ff_s is

signal t_tmp : std_logic; -- intermediate signal declaration
begin

tff: process (S,CLK)
begin

if (S = '0') then
t_tmp <= '1';

elsif (rising_edge(CLK)) then
t_tmp <= T XOR t_tmp; -- temp output assignment

end if;
end process tff;

Q <= t_tmp; -- final output assignment
end my_t_ff_s;

6.10 Inducing Memory: Data-flow vs. Behavioral Modeling

A major portion of digital design deals with sequential circuits. Generally

speaking, most sequential circuit design is about synchronizing events to

a clock edge. In other words, output changes only occur on a clock edge.

The introduction to memory elements in VHDL presented in this section

may lead the reader to think that memory in VHDL is only associated

with behavioral modeling, but this is not the case. The same concept

of inducing memory holds for data-flow modeling as well: not explicitly

specifying an output for every possible input condition generates a latch

(a storage element). And on this note, checking for unintended memory

element generation is one of the duties of the digital designer. As you

would imagine, memory elements add an element of needless complexity

to the synthesized circuit.

One common approach for learning the syntax and mechanics of new

6.11 Important Points 85

computer languages is to implement the same task in as many different

ways as possible. This approach utilizes the flexibility of the language and

is arguably a valid approach to learning a new language. This is also the

case in VHDL. But, probably more so in VHDL than other languages,

there are specific ways of doing things and these things should always be

done in these specific ways. Although it would be possible to generate

flip-flops using data-flow models, most knowledgeable people examining

your VHDL code would not initially be clear as to what exactly you are

doing. As far as generating synchronous memory elements go, the methods

outlined in this section are simply the optimal method of choice. This is

one area not to be clever with.

6.11 Important Points

• Storage elements in VHDL are induced by not specifying output con-

ditions for every possible input condition.

• Unintended generation of storage elements is generally listed by the

synthesizer as latch generation. Once again, latches are generated when

there is an existing input condition to a circuit that does not have a

corresponding output specification.

• Memory elements can be induced by both data-flow and behavioral

models.

• If a signal declared in the entity declaration has a mode specifier of out,

that signal cannot appear on the right-hand side of a signal assignment

operator. This limitation is bypassed by using intermediate signals for

any functional assignments and later assigning the intermediate signal

to the output signal using a concurrent signal assignment statement.

• The mode specification of buffer should be avoided in favor of inter-

mediate signals.

86 Chapter 6: VHDL Operators

6.12 Exercises: Basic Memory Elements

EXERCISE 1. Provide a VHDL behavi-

oral model of the D flip-flop shown on the

right. The S and R inputs are an active low

asynchronous preset and clear. Assume both

the S and R inputs will never be asserted

simultaneously.

S

D

CLK

R

Q

Q

EXERCISE 2. Provide a VHDL behavi-

oral model of the D flip-flop shown on the

right. The S and R inputs are an active low

asynchronous preset and clear. Assume the

S input takes precedence over the R input in

the case where both are asserted simultan-

eously.

S

D

CLK

R

Q

Q

EXERCISE 3. Provide a VHDL behavi-

oral model of the D flip-flop shown on the

right. The S and R inputs are synchronous

preset and clear. Assume both the S and R

inputs will never be asserted simultaneously.

S

D

CLK

R

Q

Q

EXERCISE 4. Provide a VHDL behavi-

oral model of the D flip-flop shown on the

right. The S and R inputs are an active low

asynchronous preset and clear. If both the

S and R inputs are asserted simultaneously,

the output of the flip-flop will toggle.

S

D

CLK

R

Q

Q

6.12 Exercises: Basic Memory Elements 87

EXERCISE 5. Provide a VHDL behavi-

oral model of the T flip-flop shown on the

right. The S and R inputs are an active low

asynchronous preset and clear. Assume both

the S and R inputs will never be asserted

simultaneously. Implement this flip-flop first

using an equation description of the outputs

and then using a behavioral description of

the outputs.

S

T

CLK

R

Q

Q

EXERCISE 6. Provide a VHDL behavi-

oral model of the T flip-flop shown on the

right. The S and R inputs are an active low

asynchronous preset and clear. Assume both

the S and R inputs will never be asserted

simultaneously.

S

T

CLK

R

Q

Q

7
Finite State Machine Design Using VHDL

Finite state machines (FSMs) are mathematical abstractions that are used

to solve a large variety of problems, among which are electronic design

automation, communication protocol design, parsing and other engineer-

ing applications. At this point in your digital design career, you might have

probably designed quite a few state machines on paper. You are now at

the point where you can implement and test them using actual hardware

if you so choose. The first step in this process is to learn how to model

FSMs using VHDL.

As you will see in the next section, simple FSM designs are just a step

beyond the sequential circuit design described in the previous section. The

techniques you learn in this section will allow you to quickly and easily

design relatively complex FSMs which can be very useful in many number

of ways.

Figure 7.1: Block diagram for a Moore-type FSM.

90 Chapter 7: Finite State Machine Design Using VHDL

Figure 7.2: Model for VHDL implementations of FSMs.

A block diagram for a standard Moore-type FSM is shown in Fig. 7.1.

This diagram looks fairly typical but different names are used for some

of the blocks in the design. The Next State Decoder is a block of

combinatorial logic that uses the current external inputs and the current

state to decide upon the next state of the FSM. In other words, the inputs

to the Next State Decoder block are decoded to produce an output

that represents the next state of the FSM. The circuitry in Next State

Decoder is generally the excitation equations for the storage elements

(flip-flops) in the State Register block. The next state becomes the

present state of the FSM when the clock input to the state registers block

becomes active. The state registers block is a storage element that stores

the present state of the machine. The inputs to the Output Decoder are

used to generate the desired external outputs. The inputs are decoded via

combinatorial logic to produce the external outputs. Because the external

outputs are only dependent upon the current state of the machine, this

FSM is classified as a Moore-type FSM.

The FSM model shown in Fig. 7.1 is probably the most common model

for describing a Moore-type FSM. That is most likely because students

are often asked to generate the combinatorial logic required to implement

the Next State Decoder and the Output Decoder; however here

we want to think about FSMs in the context of VHDL. The true power

of VHDL starts to emerge in its dealings with FSMs. As you will see, the

versatility of VHDL behavioral modeling removes the need for large paper

designs of endless K-maps and endless combinatorial logic elements.

There are several different approaches used to model FSMs using VHDL.

91

The many different possible approaches are a result of the general ver-

satility of VHDL as a language. What we will describe in this section is

probably the clearest approach for FSM implementation. A block diagram

of the approach we will use in the implementation of FSMs is shown in

Fig. 7.2.

Although it does not look that much clearer, you will soon be finding the

FSM model shown in Fig. 7.2 to be a straightforward method to implement

FSMs. The approach we will use divides the FSM into two VHDL pro-

cesses. One process, referred to as the Synchronous Process handles

all the matters regarding clocking and other controls associated with

the storage element. The other process, the Combinatorial Process,

handles all the matters associated with the Next State Decoder and

the Output Decoder of Fig. 7.1. Note that the two blocks in Fig. 7.1

are both made solely of combinatorial logic.

There is some new lingo used in the description of signals used in Fig. 7.2;

this description is outlined and described below:

• The inputs labelled Parallel Inputs are used to signify inputs

that act in parallel to each of the storage elements. These inputs would

include enables, presets, clears, etc.

• The inputs labelled State Transition Inputs include external

inputs that control the state transitions. These inputs also include

external inputs used to decode Mealy-type external outputs.

• The Present State signals are used by the Combinatorial Process

box for both next state decoding and output decoding. The diagram

of Fig. 7.2 also shows that the Present State variables can also be

provided as outputs to the FSM but they are not required.

One final comment before we begin. Although there are many different

methods that can be used to described FSMs using VHDL, two of the more

common approaches are the dependent and independent PS/NS styles.

This book only covers the dependent style because it is clearer than the

independent PS/NS style. The model shown in Fig. 7.2 is actually a model

of the dependent PS/NS style of FSMs. Once you understand the VHDL

modeling of the dependent PS/NS style of FSM, the understanding of the

92 Chapter 7: Finite State Machine Design Using VHDL

independent PS/NS style or any other style is relatively painless. More

information on the other FSM coding styles is found in various VHDL

texts or on the web.

7.1 VHDL Behavioral Representation of FSMs

EXAMPLE 18. Write the VHDL

code that implements the FSM

shown on the right. Use a depend-

ent PS/NS coding style in your im-

plementation.

SOLUTION. This problem represents a basic FSM implementation. It

is somewhat instructive to show the black-box diagram which is an aid in

writing the entity description. Starting FSM problems with the drawing

of a black box diagram is always a healthy approach particularly when

dealing with FSMs. Oftentimes with FSM problems, it becomes challen-

ging to discern the FSM inputs from the outputs. Drawing a diagram

partially alleviates this problem. The black box diagram and the code for

the solution of Example 18 is shown in Listing 7.1.

7.1 VHDL Behavioral Representation of FSMs 93

Listing 7.1: Solution to Example 18.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_fsm1 is

port (TOG_EN : in std_logic;
CLK,CLR : in std_logic;

Z1 : out std_logic);
end my_fsm1;
-- architecture
architecture fsm1 of my_fsm1 is

type state_type is (ST0,ST1);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,CLR)
begin

-- take care of the asynchronous input
if (CLR = '1') then

PS <= ST0;
elsif (rising_edge(CLK)) then

PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,TOG_EN)
begin

Z1 <= '0'; -- pre-assign output
case PS is

when ST0 => -- items regarding state ST0
Z1 <= '0'; -- Moore output
if (TOG_EN = '1') then NS <= ST1;
else NS <= ST0;
end if;

when ST1 => -- items regarding state ST1
Z1 <= '1'; -- Moore output
if (TOG_EN = '1') then NS <= ST0;
else NS <= ST1;
end if;

when others => -- the catch-all condition
Z1 <= '0'; -- arbitrary; it should never
NS <= ST0; -- make it to these two statements

end case;
end process comb_proc;

end fsm1;

And of course, this solution has many things worth noting in it. The

more interesting things are listed below.

• We have declared a special VHDL type named state type to rep-

resent the states in this FSM. This is an example of how enumeration

types are used in VHDL. As with enumeration types in other higher-

level computer languages, there are internal numerical representations

for the listed state types but we only deal with the more expressive

symbolic equivalent. In this case, the type we have created is called a

state type and we have declared two variables of this type: PS and

94 Chapter 7: Finite State Machine Design Using VHDL

NS. The key thing to note here is that a state type is something we

have created and is not a native VHDL type.

• The synchronous process is equal in form and function to the simple

D flip-flops we examined in the section about sequential circuits. The

only difference is that we have substituted PS and NS for D and Q,

respectively. Something to note here is that the storage element is

associated with the PS signal only. Note that PS is not specified for

every possible combination of inputs.

• Even though this example is of the simplest FSM you could hope for,

the code looks somewhat complicated. But if you examine it closely,

you can see that everything is nicely compartmentalized in the solu-

tion. There are two processes; the synchronous process handles the

asynchronous reset and the assignment of a new state upon the arrival

of the system clock. Additionally, the combinational process handles

the outputs not handled in the synchronous process.

• Because the two processes operate concurrently, they can be considered

as working in a lock-step manner. Changes to the NS signal that are

generated in the combinatorial process force an evaluation of the syn-

chronous process. When the changes are actually instituted in the syn-

chronous process on the next clock edge, the changes in the PS signal

causes the combinatorial process to be evaluated. And so on and so

forth.

• The case statement in the combinatorial process provides a when

clause for each state of the FSM. This is the standard approach for

the dependent PS/NS coding style. A when others clause has also

been used. The signal assignments that are part this catch-all clause

are arbitrary since the code should never actually make it there. This

statement is provided for a sense of completeness and represents good

VHDL coding practice.

• The Moore output is a function of only the present state. This is ex-

pressed by the fact that the assignment of the Z1 output is uncon-

ditionally evaluated in each when clause of the case statement in the

7.1 VHDL Behavioral Representation of FSMs 95

combinatorial process. In other words, the Z1 variable is inside the

when clause but outside of the if statement in the when clause. This

is of course because the Moore outputs are only a function of the

states and not the external inputs. Note that it is the external input

that controls the which state the FSM transitions to from any given

state. You will see later that Mealy outputs, due their general nature,

are assigned inside the if statement.

• The Z1 output is pre-assigned as the first step in the combinatorial

process. Pre-assigning it in this fashion prevents the unexpected latch

generation for the Z1 signal. When dealing with FSMs, there is a nat-

ural tendency for the FSM designer to forget to specify an output for

the Z1 variable in each of the states. Pre-assigning it prevents latches

from being generated and can arguably clean up the source code. The

pre-assignment makes no difference to the VHDL code because if mul-

tiple assignments are made within the code, only the final assignment

takes effect. In other words, only the final assignment is considered

once the process terminates.

There is one final thing to note about Example 18. In an effort to keep

the example simple, we disregarded the digital values of the state variables.

This is indicated in the black-box diagram of Listing 7.1 by the fact that

the only output of the FSM is the signal Z1. This is reasonable in that it

could be considered that only one output was required in order to control

some other device or circuit. The state variable is represented internally

and its precise representation is not important since the state variable is

not provided as an output.

In some FSM designs, the state variables are provided as outputs. To

show this situation, we will provide a solution to Example 18 with the

state variables as outputs. The black-box diagram and the VHDL code of

this solution is shown in Listing 7.2.

96 Chapter 7: Finite State Machine Design Using VHDL

Listing 7.2: Solution to Example 18 that include state variable as output.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_fsm2 is

port (TOG_EN : in std_logic;
CLK,CLR : in std_logic;

Y,Z1 : out std_logic);
end my_fsm2;
-- architecture
architecture fsm2 of my_fsm2 is

type state_type is (ST0,ST1);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,CLR)
begin

if (CLR = '1') then
PS <= ST0;

elsif (rising_edge(CLK)) then
PS <= NS;

end if;
end process sync_proc;

comb_proc: process(PS,TOG_EN)
begin

Z1 <= '0';
case PS is

when ST0 => -- items regarding state ST0
Z1 <= '0'; -- Moore output
if (TOG_EN = '1') then NS <= ST1;
else NS <= ST0;
end if;

when ST1 => -- items regarding state ST1
Z1 <= '1'; -- Moore output
if (TOG_EN = '1') then NS <= ST0;
else NS <= ST1;
end if;

when others => -- the catch-all condition
Z1 <= '0'; -- arbitrary; it should never
NS <= ST0; -- make it to these two statements

end case;
end process comb_proc;

-- assign values representing the state variables
with PS select

Y <= '0' when ST0,
'1' when ST1,
'0' when others;

end fsm2;

Note that the VHDL code shown in Listing 7.2 differs in only two areas

from the code shown in Listing 7.1. The first area is the modification of

the entity declaration to account for the state variable output Y. The

second area is the inclusion of the selective signal assignment statement

which assigns a value of state variable output Y based on the condition of

the state variable. The selective signal assignment statement is evaluated

7.1 VHDL Behavioral Representation of FSMs 97

each time a change in signal PS is detected. Once again, since we have

declared an enumeration type for the state variables, we have no way of

knowing exactly how the synthesizer will decide to represent the state

variable. The selective signal assignment statement in the code of Listing

7.2 only makes it appear like there is one state variable and the states are

represented with a ’1’ and a ’0’. In reality, there are methods we can use

to control how the state variables are represented and we will deal with

those soon.

Lastly, there are three concurrent statements in the VHDL code shown

in Listing 7.2: two process statements and a selective signal assignment

statement.

EXAMPLE 19. Write the VHDL

code that implements the FSM

shown on the right. Use a depend-

ent PS/NS coding style in your

implementation. Consider the state

variables as outputs of the FSM.

SOLUTION. The state diagram shown in this problem indicates that

this is a three-state FSM with one Mealy-type external output and one

external input. Since there are three states, the solution requires at least

two state variables to handle the three states. The black-box diagram of

the solution is shown in Listing 7.3. Note that the two state variables are

handled as a bundled signal.

98 Chapter 7: Finite State Machine Design Using VHDL

Listing 7.3: Solution to Example 19.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_fsm3 is

port (X,CLK,SET : in std_logic;
Y : out std_logic_vector(1 downto 0);
Z2 : out std_logic);

end my_fsm3;
-- architecture
architecture fsm3 of my_fsm3 is

type state_type is (ST0,ST1,ST2);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,SET)
begin

if (SET = '1') then
PS <= ST2;

elsif (rising_edge(CLK)) then
PS <= NS;

end if;
end process sync_proc;

comb_proc: process(PS,X)
begin

Z2 <= '0'; -- pre-assign FSM outputs
case PS is

when ST0 => -- items regarding state ST0
Z2 <= '0'; -- Mealy output always 0
if (X = '0') then NS <= ST0;
else NS <= ST1;
end if;

when ST1 => -- items regarding state ST1
Z2 <= '0'; -- Mealy output always 0
if (X = '0') then NS <= ST0;
else NS <= ST2;
end if;

when ST2 => -- items regarding state ST2
-- Mealy output handled in the if statement
if (X = '0') then NS <= ST0; Z2 <= '0';
else NS <= ST2; Z2 <= '1';
end if;

when others => -- the catch all condition
Z2 <= '1'; NS <= ST0;

end case;
end process comb_proc;

-- faking some state variable outputs
with PS select

Y <= "00" when ST0,
"10" when ST1,
"11" when ST2,
"00" when others;

end fsm3;

As usual, there are a couple of fun things to point out about the solu-

tion for Example 19. Most importantly, you should note the similarities

between this solution and the previous solution.

7.1 VHDL Behavioral Representation of FSMs 99

• The FSM has one Mealy-type output. The solution essentially treats

this output as a Moore-type output in the first two when clauses of the

case statement. In the final when clause, the Z2 output appears in

both sections of the if statement. The fact the Z2 output is different

in the context of state ST2 that makes it a Mealy-type output and

therefore a Mealy-type FSM.

• When faking the state variable outputs (keeping in mind that the

actual state variables are represented with enumeration types), two

signals are required since the state diagram contains more than two

states (and less than five states). The solution opted is to represent

these outputs as a bundle which has the effect of slightly changing the

form of the selected signal assignment statement appearing at the end

of the architecture description.

EXAMPLE 20. Write the VHDL

code that implements the FSM

shown on the right. Use a depend-

ent PS/NS coding style in your im-

plementation. Consider the listed

state variables as output.

SOLUTION. The state diagram indicates that its implementation will

contain four states, one external input and two external outputs. This is a

hybrid FSM in that the if contains both a Mealy and Moore-type output

but in this case, the FSM would be considered a Mealy-type FSM. The

black-box diagram and the actual solution for the solution is shown in

Listing 7.4.

100 Chapter 7: Finite State Machine Design Using VHDL

Listing 7.4: Solution to Example 20.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_fsm4 is

port (X,CLK,RESET : in std_logic;
Y : out std_logic_vector(1 downto 0);

Z1,Z2 : out std_logic);
end my_fsm4;
-- architecture
architecture fsm4 of my_fsm4 is

type state_type is (ST0,ST1,ST2,ST3);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,RESET)
begin
if (RESET = '1') then PS <= ST0;
elsif (rising_edge(CLK)) then PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,X)
begin

-- Z1: the Moore output; Z2: the Mealy output
Z1 <= '0'; Z2 <= '0'; -- pre-assign the outputs
case PS is

when ST0 => -- items regarding state ST0
Z1 <= '1'; -- Moore output
if (X = '0') then NS <= ST1; Z2 <= '0';
else NS <= ST0; Z2 <= '1';
end if;

when ST1 => -- items regarding state ST1
Z1 <= '1'; -- Moore output
if (X = '0') then NS <= ST2; Z2 <= '0';
else NS <= ST1; Z2 <= '1';
end if;

when ST2 => -- items regarding state ST2
Z1 <= '0'; -- Moore output
if (X = '0') then NS <= ST3; Z2 <= '0';
else NS <= ST2; Z2 <= '1';
end if;

when ST3 => -- items regarding state ST3
Z1 <= '1'; -- Moore output
if (X = '0') then NS <= ST0; Z2 <= '0';
else NS <= ST3; Z2 <= '1';
end if;

when others => -- the catch all condition
Z1 <= '1'; Z2 <= '0'; NS <= ST0;

end case;
end process comb_proc;

with PS select
Y <= "00" when ST0,

"01" when ST1,
"10" when ST2,
"11" when ST3,
"00" when others;

end fsm4;

7.2 One-Hot Encoding for FSMs 101

If you haven’t noticed by now, implementing FSMs using the VHDL

behavioral model is remarkably straightforward. In reality, I rarely code a

FSM from scratch; I usually opt to grab some previous FSM I have coded

and start from there. Keep in mind that real engineering is rarely based

on a cookbook. For FSM problems, the engineering is in the testing and

creation of the state diagram. Do not get too comfortable with behavioral

modeling of FSMs; the real fun is actually generating a FSM that solves

a given problem.

7.2 One-Hot Encoding for FSMs

Truth told, there are many different methods that can be used to encode

state variables1. If the exact form of the representation used is important

to you, then you will need to take the necessary steps in order to control

how the state variables are represented by the synthesizer. There are two

approaches to control state variable representation. The first approach is

to allow the synthesizing tool to handle the details. Since every FSM we

have seen up to this point has used enumeration types to represent the

state variables, the synthesizer could choose to actually represent them

with an encoding scheme of its own choosing. The reality is that the

tools generally have an option to select the desired encoding scheme. The

downside of this approach is that you are denied the learning experience

associated with implementing the VHDL code that explicitly induces your

desired encoding scheme. After all, you may have some special encoding

scheme you need to use but is not supported by the development tools.

The second approach to encoding the state variables is to specify them

directly in VHDL. The approach of specifying the state variables in the

VHDL code is presented in this section.

One-hot encoding uses one bit in the state register for each state of the

FSM. For a one-hot encoding FSM with 16 states, 16 flip flops are required.

However only four flip flops are required if the same FSM is implemented

using a binary encoding. One-hot encoding simplifies the logic and the

interconnections between overall logic. Despite looking quite wasteful in

1In this case, encoding refers to the act of assigning a unique pattern of 1’s and 0’s

to each of the state in order to make them unambiguous from other states.

102 Chapter 7: Finite State Machine Design Using VHDL

terms of employed logic, one-hot encoding often results in smaller and

faster FSMs.

The approach taken in the previous FSM examples was to pretend we

were using full encoding for the state variables of the FSM. The full encod-

ing approach minimizes the number of storage elements (flip-flops) used to

store the state variables. The closed form equation describing the number

of flip-flops required for a given FSM as a function of the number of states

is shown in equation 7.1. The bracket-like symbols used in equation 7.1

indicate a ceiling function2. The binary nature expressed by this equation

is so apparent that this encoding is often referred to as binary encoding.

#(flip flops) = dlog2(#states)e (7.1)

For one-hot encoded FSMs, only one flip-flop is asserted at any given

time. This requires that each distinct state be represented by one flip-flop.

In one-hot encoding, the number of flip-flops required to implement a FSM

is therefore equal to the number of states in the FSM. The closed form of

this relationship is shown in equation 7.2.

#(flip flops) = d#(states)e (7.2)

The question naturally arises as to how VHDL can be used to implement

one-hot encoded FSMs. If you want total control of the process, you will

need to grab control away from the synthesizer. And since we are con-

cerned with learning VHDL, we need to look at the process of explicitly

encoding one-hot FSMs.

The modular approach we used to implement FSMs expedites the con-

version process from using enumeration types to actually specifying how

the state variables are represented. The changes from our previous ap-

proach are limited to how the outputs are assigned to the state variables

and how the state variables are forced to be represented by certain bit

patterns. Modifications to the fully encoded approach are thus limited

to the entity declaration (you will need more variables to represent the

2The ceiling function y = dxe assigns y to the smallest integer that is greater or

equal to x.

7.2 One-Hot Encoding for FSMs 103

states), the declaration of the state variables (you will need to explicitly

declare the bit patterns associated with each state) and the assignment of

the state variables to the outputs (in this case, we are actually not faking

it like we were in other examples).

EXAMPLE 21. Write the VHDL

code that implements the FSM

shown on the right. Use a depend-

ent PS/NS coding style in your im-

plementation. Consider the listed

state variables as output. Use one-

hot encoding for the state variables.

This problem is Example 20 all over

again but uses true one-hot encod-

ing for the state variables.

SOLUTION. The state diagram shows four states, one external input X,

two external outputs Z1 and Z2 with the Z2 output being a Mealy output.

This is a Mealy machine that indicates one-hot encoding should be used

to encode the state variables. We will approach the implementation of this

FSM one piece at the time.

Listing 7.5 shows the modifications to the entity declaration required

to convert the full encoding used in Example 20 to a pseudo one-hot en-

coding. Listing 7.6 shows the required modifications to the state variable

output assignment in order to move from enumeration types to a special

form of assigned types. Forcing the state variables to be truly encoded

using one-hot encoding requires these two extra lines of code as is shown

in Listing 7.6. These two lines of code essentially force the VHDL synthes-

izer to represent each state of the FSM with its own storage element. In

other words, each state is represented by the ”string” modifier as listed.

This forces four bits per state to be remembered by the FSM implement-

ation which essentially requires four flip-flops. Note in Listing 7.7 that the

104 Chapter 7: Finite State Machine Design Using VHDL

default case is assigned a valid one-hot state instead of the customary all

zero state. You should strongly consider comparing these three figures.

The total solution is shown in Listing 7.8

Listing 7.5: Modifications to convert Example 20 to one-hot encoding.

-- full encoded approach
entity my_fsm4 is

port (X,CLK,RESET : in std_logic;
Y : out std_logic_vector(1 downto 0);

Z1,Z2 : out std_logic);
end my_fsm4;
--
-- one-hot encoding approach
entity my_fsm4 is

port (X,CLK,RESET : in std_logic;
Y : out std_logic_vector(3 downto 0);

Z1,Z2 : out std_logic);
end my_fsm4;

Listing 7.6: Modifications to convert state variables to use one-hot encoding.

-- the approach for enumeration types
type state_type is (ST0,ST1,ST2,ST3);
signal PS,NS : state_type;
--
-- the approach used for explicitly specifying state bit patterns
type state_type is (ST0,ST1,ST2,ST3);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of state_type: type is "1000 0100 0010 0001";
signal PS,NS : state_type;

Listing 7.7: Modifications to convert state output to pseudo one-hot encoding.

-- fake full encoded approach
with PS select

Y <= "00" when ST0,
"01" when ST1,
"10" when ST2,
"11" when ST3,
"00" when others;

end fsm4;
--
-- one-hot encoded approach
with PS select

Y <= "1000" when ST0,
"0100" when ST1,
"0010" when ST2,
"0001" when ST3,
"1000" when others;

end fsm4;

7.2 One-Hot Encoding for FSMs 105

Listing 7.8: The final solution to Example 21.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_fsm4_oh is

port (X,CLK,RESET : in std_logic;
Y : out std_logic_vector(3 downto 0);

Z1,Z2 : out std_logic);
end my_fsm4_oh;
-- architeture
architecture fsm4_oh of my_fsm4_oh is

type state_type is (ST0,ST1,ST2,ST3);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of state_type: type is "1000 0100 0010 0001";
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,RESET)
begin

if (RESET = '1') then PS <= ST0;
elsif (rising_edge(CLK)) then PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,X)
begin

-- Z1: the Moore output; Z2: the Mealy output
Z1 <= '0'; Z2 <= '0'; -- pre-assign the outputs
case PS is

when ST0 => -- items regarding state ST0
Z1 <= '1'; -- Moore output
if (X = '0') then NS <= ST1; Z2 <= '0';
else NS <= ST0; Z2 <= '1';
end if;

when ST1 => -- items regarding state ST1
Z1 <= '1'; -- Moore output
if (X = '0') then NS <= ST2; Z2 <= '0';
else NS <= ST1; Z2 <= '1';
end if;

when ST2 => -- items regarding state ST2
Z1 <= '0'; -- Moore output
if (X = '0') then NS <= ST3; Z2 <= '0';
else NS <= ST2; Z2 <= '1';
end if;

when ST3 => -- items regarding state ST3
Z1 <= '1'; -- Moore output
if (X = '0') then NS <= ST0; Z2 <= '0';
else NS <= ST3; Z2 <= '1';
end if;

when others => -- the catch all condition
Z1 <= '1'; Z2 <= '0'; NS <= ST0;

end case;
end process comb_proc;

-- one-hot encoded approach
with PS select

Y <= "1000" when ST0,
"0100" when ST1,
"0010" when ST2,
"0001" when ST3,
"1000" when others;

end fsm4_oh;

106 Chapter 7: Finite State Machine Design Using VHDL

7.3 Important Points

• Modeling FSMs from a state diagram is a straightforward process using

VHDL behavioral modeling. The process is so straightforward that

it is often considered cookie cutter. The real engineering involved in

implementing FSM is in the generation of the state diagram that solved

the problem at hand.

• Due to the general versatility of VHDL, there are many approaches

that can be used to model FSMs using VHDL. The approach used

here details only one of those styles but is generally considered the

most straightforward of all styles.

• The actual encoding of the FSM’s state variables when enumeration

types are used is left up to the synthesis tool. If a preferred method

of variable encoding is desired, using the attribute approach detail in

this section is a simple but viable alternative.

7.4 Exercises: Behavioral Modeling of FSMs 107

7.4 Exercises: Behavioral Modeling of FSMs

EXERCISE 1. Draw the state diagram associated with the following

VHDL code. Be sure to provide a legend and completely label everything.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity fsm is

port (X,CLK : in std_logic;
RESET : in std_logic;
Z1,Z2 : out std_logic;

end fsm;
-- architecture
architecture fsm of fsm is

type state_type is (A,B,C);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,RESET)
begin

if (RESET = '0') then PS <= C;
elsif (rising_edge(CLK)) then PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,X)
begin

case PS is
Z1 <= '0'; Z2 <= '0';
when A =>

Z1 <= '0';
if (X='0') then NS<=A; Z2<='1';
else NS <= B; Z2 <= '0';
end if;

when B =>
Z1 <= '1';
if (X='0') then NS<=A; Z2<='0';
else NS <= C; Z2 <= '1';
end if;

when C =>
Z1 <= '1';
if (X='0') then NS<=B; Z2<='1';
else NS <= A; Z2 <= '0';
end if;

when others =>
Z1 <= '1'; NS<=A; Z2<='0';

end case;
end process comb_proc;

end fsm;

108 Chapter 7: Finite State Machine Design Using VHDL

EXERCISE 2. Write a VHDL be-

havioral model that could be used

to implement the state diagram as

shown on the right. The state vari-

ables should be encoded as listed and

also provided as outputs of the FSM.

EXERCISE 3. Draw the state diagram associated with the following

VHDL code. Be sure to provide a legend and remember to label everything.

7.4 Exercises: Behavioral Modeling of FSMs 109

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity fsmx is

Port (BUM1,BUM2 : in std_logic;
CLK : in std_logic;

TOUT,CTA : out std_logic);
end fsmx;
-- architecture
architecture my_fsmx of fsmx is

type state_type is (S1,S2,S3);
signal PS,NS : state_type;

begin
sync_p: process (CLK,NS)
begin

if (rising_edge(CLK)) then
PS <= NS;

end if;
end process sync_p;

comb_p: process (CLK,BUM1,BUM2)
begin

case PS is

when S1 =>
CTA <= '0';
if (BUM1 = '0') then

TOUT <= '0';
NS <= S1;

elsif (BUM1 = '1') then
TOUT <= '1';
NS <= S2;

end if;

when S2 =>
CTA <= '0';
TOUT <= '0';
NS <= S3;

when S3 =>
CTA <= '1';
TOUT <= '0';
if (BUM2 = '1') then

NS <= S1;
elsif (BUM2 = '0') then

NS <= S2;
end if;

when others => CTA <= '0';
TOUT <= '0';
NS <= S1;

end case;
end process comb_p;

end my_fsmx;

110 Chapter 7: Finite State Machine Design Using VHDL

EXERCISE 4. Write the VHDL

behavioral model code that could be

used to implement the state diagram

on shown in the right.

EXERCISE 5. Draw the state diagram associated with the following

VHDL code. Consider the outputs Y to be representative of the state

variables. Be sure to provide a legend. Indicate the states with both state

variables and their symbolic equivalents.

7.4 Exercises: Behavioral Modeling of FSMs 111

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity fsm is
port (X,CLK : in std_logic;

RESET : in std_logic;
Z1,Z2 : out std_logic;

Y : out std_logic_vector(2 downto 0));
end fsm;
-- architecture
architecture my_fsm of fsm is

type state_type is (A,B,C);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of state_type: type is "001 010 100";
signal PS,NS : state_type;

begin

sync_proc: process(CLK,NS,RESET) -- process
begin

if (RESET = '0') then PS <= C;
elsif (rising_edge(CLK)) then PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,X) -- process
begin

case PS is
when A =>

Z1 <= '0';
if (X = '0') then NS <= A; Z2 <= '1';
else NS <= B; Z2 <= '0';
end if;

when B =>
Z1 <= '1';
if (X = '0') then NS <= A; Z2 <= '0';
else NS <= C; Z2 <= '1';
end if;

when C =>
Z1 <= '1';
if (X = '0') then NS <= B; Z2 <= '1';
else NS <= A; Z2 <= '0';
end if;

when others =>
Z1 <= '1'; NS <= A; Z2 <= '0';

end case;
end process comb_proc;

with PS select
Y <= "001" when A,

"010" when B,
"100" when C,
"001" when others;

end my_fsm;

112 Chapter 7: Finite State Machine Design Using VHDL

EXERCISE 6. Write a VHDL be-

havioral model code that can be

used to implement the state diagram

shown on the right. All state vari-

ables should be encoded as listed and

also provided as outputs of the FSM.

EXERCISE 7. Draw the state diagram that corresponds to the following

VHDL model and state whether the FSM is a Mealy machine or a Moore

machine. Be sure to label everything.

7.4 Exercises: Behavioral Modeling of FSMs 113

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity fsm is

Port (CLK,CLR,SET,X1,X2 : in std_logic;
Z1,Z2 : out std_logic);

end fsm;
-- architecture
architecture my_fsm of fsm is

type state_type is (sA,sB,sC,sD);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of state_type: type

is "1000 0100 0010 0001";
signal PS,NS : state_type;

begin
sync_p: process (CLK,NS,CLR,SET) -- process
begin

if (CLR = '1' and SET = '0') then
PS <= sA;

elsif (CLR = '0' and SET = '1') then
PS <= sD;

elsif (rising_edge(CLK)) then
PS <= NS;

end if;
end process sync_p;

comb_p: process (X1,X2,PS) -- process
begin

case PS is
when sA =>

if (X1 = '1') then
Z1 <= '0'; Z2 <= '0';
NS <= sA;

else
Z1 <= '0'; Z2 <= '0';
NS <= sB;

end if;
when sB =>

if (X2 = '1') then
Z1 <= '1'; Z2 <= '1';
NS <= sC;

else
Z1 <= '1'; Z2 <= '0';
NS <= sB;

end if;
when sC =>

if (X2 = '1') then
Z1 <= '0'; Z2 <= '0';
NS <= sB;

else
Z1 <= '0'; Z2 <= '1';
NS <= sC;

end if;
when sD =>

if (X1 = '1') then
Z1 <= '1'; Z2 <= '1';
NS <= sD;

else
Z1 <= '1'; Z2 <= '1';
NS <= sC;

end if;
end case;

end process comb_p;
end my_fsm;

114 Chapter 7: Finite State Machine Design Using VHDL

EXERCISE 8. Write the VHDL

behavioral model code that can be

used to implement the state diagram

shown on the right. The state vari-

ables should be encoded as listed and

also provided as outputs of the FSM.

EXERCISE 9. Write the VHDL

behavioral model code that can be

used to implement the state diagram

shown on the right. The state vari-

ables should be encoded as listed and

also provided as outputs of the FSM.

EXERCISE 10. Write the VHDL

behavioral model code that can be

used to implement the state diagram

shown on the right. The state vari-

ables should be encoded as listed and

also provided as outputs of the FSM.

7.4 Exercises: Behavioral Modeling of FSMs 115

EXERCISE 11. Write the VHDL

behavioral model code that can be

used to implement the state diagram

shown on the right. The state vari-

ables should be encoded as listed and

also provided as outputs of the FSM.

EXERCISE 12. Write the VHDL behavioral model code that can be

used to implement the state diagram shown on the right. The state vari-

ables should be encoded as listed and also provided as outputs of the

FSM.

EXERCISE 13. Write the VHDL

behavioral model code that can be

used to implement the state diagram

shown on the right. The state vari-

ables should be encoded as listed and

also provided as outputs of the FSM.

EXERCISE 14. Write the VHDL

behavioral model code that can be

used to implement the state diagram

shown on the right. The state vari-

ables should be encoded as listed and

also provided as outputs of the FSM.

8
Structural Modeling In VHDL

As was mentioned earlier, there are generally three approaches to writ-

ing VHDL code: data-flow modeling, behavioral modeling and structural

modeling.

Up to this point, this book has only dealt with data-flow and behavioral

models. This section presents an introduction to structural modeling.

As digital designs become more complex, it becomes less likely that any

one design can be implemented with any one of the three types of VHDL

models. We have already seen this property in dealings with FSMs where

we mixed process statements (behavioral modeling) with selective sig-

nal assignment statements (data-flow modeling). The result was a hybrid

VHDL model. By its very nature, structural modeling is likewise a hy-

brid VHDL model. Most complex designs could be considered structural

models, i.e. if they are implemented using sound coding procedures.

The design of complex digital circuits using VHDL should closely re-

semble the structure of complex computer programs. Many of the tech-

niques and practices used to construct large and well structured computer

programs written in higher-level languages should also be applied when

using VHDL. This common structure we are referring to is the ever so

popular modular approach to coding. The term structural modeling is the

terminology that VHDL uses for the modular design. The VHDL modular

design approach directly supports hierarchical design which is essentially

employed when attempting to understand complex digital designs.

118 Chapter 8: Structural Modeling In VHDL

The benefits of modular design to VHDL are similar to the benefits that

modular design or object-oriented design provides for higher-level com-

puter languages. Modular designs promote understandability by packing

low-level functionality into modules. These modules can be easily reused

in other designs thus saving the designer time by removing the need to

reinvent and re-test the wheel. The hierarchical approach extends bey-

ond code written on file level. VHDL modules can be placed in appropri-

ately named files and libraries in the same way as higher-level languages.

Moreover, there are often libraries out there that contain useful modules

that can only be accessed using a structural-modeling approach. Having

access to these libraries and being fluent in their use will serve to increase

your perception as a VHDL guru.

After all the commentary regarding complex designs, we present a few

simple examples. Though the structural approach is most appropriately

used in complex digital designs, the examples presented in this section are

rather simplistic in nature. These examples show the essential details of

VHDL structural modeling. It is up to the designer to conjure up digital

designs where a structural modeling approach would be more appropriate.

Keep in mind that your first exposure to structural modeling may be

somewhat rough. Although there is some new syntax to become familiar

with, once you complete a few structural designs, this new syntax becomes

ingrained in your brain and it becomes second nature to apply where

required.

The tendency at this juncture in your VHDL programming career is

to use some type of schematic capture software instead of learning the

structural modeling approach. The fact is that no one of consequence uses

the schematic capture software except for tired old university professors

who are more interested in selling books than they are in teaching modern

approach to VHDL modeling. The funny part about this entire process is

that the schematic capture software is a tool that allows you to visually

represent circuits but in the end generates VHDL code (the only thing the

synthesizer understands is VHDL code).

8.1 VHDL Modularity with Components 119

8.1 VHDL Modularity with Components

The main tool for modularity in higher-level languages such as C is the

function. In other computer languages, similar modularity is accomplished

through the use of methods, procedures and subroutines. The approach

used in C is to 1) name the function interface you plan on writing (the

function declaration), 2) code what the function will do (the function

body), 3) let the program know it exists and is available to be called (the

prototype) and 4) call the function from the main portion of the code.

In VDHL modularity is achieved via the use of packages, components

and functions. In the following sections we are going to see how to use

components.

The approach to use a component in VHDL is: 1) name the module

you plan to describe (the entity), 2) describe what the module will do (the

architecture), 3) let the program know the module exists and can be used

(component declaration) and 4) use the module in your code (component

instantiation, or mapping). The similarities between these two approaches

are listed in Table 8.1.

Let us now use these principles in a practical example. Our approach is

to describe a template-type approach to VHDL structural design using a

simple and well-known combinational circuit.

EXAMPLE 22. Design a 3-bit

comparator using a VHDL structural

modeling. The interface to this cir-

cuit is described in the diagram be-

low.

C programming language VHDL

Describe function interface The entity

Describe what the function does (coding) The architecture

Provide a function prototype to main program Component declaration

Call the function from main program Component instantiation or mapping

Table 8.1: Similarities between modules in C and VHDL.

120 Chapter 8: Structural Modeling In VHDL

SOLUTION. A comparator is one of the classic combinatorial circuits

that every digital design engineer must derive at some point in his ca-

reer. The solution presented here implements the discrete gate version of

the circuit which is shown in Fig. 8.1. Once again, the solution presen-

ted here is primarily an example of a VHDL structural model and does

not represent the most efficient method to represent a comparator using

VHDL.

The approach of this solution is to model each of the discrete gates

as individual blocks. In this case, they are actually simple gates but the

interfacing requirements of the VHDL structural approach are the same

regardless of whether the circuit elements are simple gates or complex

digital subsystems.

The circuit shown in Fig. 8.1 contains some extra information that

relates to its VHDL structural implementation. First, the dashed line rep-

resents the boundary of the top-level VHDL entity; therefore signals that

cross this boundary must appear in the entity declaration for this imple-

mentation. Second, each of the internal signals is given a name. In this

case, internal signals are defined to be signals that do not cross the dashed

entity boundary. This is a requirement for VHDL structural implementa-

tions as these signals must be assigned to the various sub-modules in the

interior of the design (somewhere in the architecture).

Figure 8.1: Discrete gate implementation of a 3-bit comparator.

The first part of the solution is to provide entity and architecture imple-

mentations for the individual gates shown in Fig. 8.1. We need to provided

8.1 VHDL Modularity with Components 121

as least one definition of an XNOR gate and a 3-input AND gate. We only

need to provide one definition of the XNOR gate despite the fact that actu-

ally three are shown in the diagram. The modular VHDL approach allows

us to reuse circuit definitions and we take advantage of this feature. These

definitions are shown in Listing 8.1.

Listing 8.1: Entity and Architecture definitions for discrete gates.

-- Description of XNOR function --

entity big_xnor is

Port (A,B : in std_logic;
F : out std_logic);

end big_xnor;

architecture ckt1 of big_xnor is
begin

F <= not ((A and (not B)) or ((not A) and B));
end ckt1;

-- Description of 3-input AND function --

entity big_and3 is

Port (A,B,C : in std_logic;
F : out std_logic);

end big_and3;

architecture ckt1 of big_and3 is
begin

F <= (A and B and C);
end ckt1;

The implementations shown in Listing 8.1 present no new VHDL de-

tails. The new information is contained in how the circuit elements listed

in Fig. 8.1 are used as components in a larger circuit. The procedures for

implementing a structural VHDL design can be summarized in the follow-

ing steps. These steps assume that the entity declarations for the interior

modules already exist.

Step 1. Generate the top-level entity declaration.

Step 2. Declare the lower-level design units used in design.

Step 3. Declare required internal signals used to connect the design units.

Step 4. Instantiate the design units.

This is how you therefore proceed:

Step One: The first step in a structural implementation is identical to the

standard approach we have used for the implementing other VHDL cir-

cuits: the entity. The entity declaration is derived directly from dashed

box in Fig. 8.1 and is shown in Listing 8.2. In other words, signals that

122 Chapter 8: Structural Modeling In VHDL

intersect the dashed lines are signals that are known to the outside world

and must be included in the entity declaration.

Listing 8.2: Entity declaration for 3-bit comparator.

-- Interface description of 3-bit comparator --

entity my_compare is

Port (A_IN : in std_logic_vector(2 downto 0);
B_IN : in std_logic_vector(2 downto 0);
EQ_OUT : out std_logic);

end my_compare;

Step Two: The next step is to declare the design units that are used

in the circuit. In VHDL lingo, declaration refers to the act of making a

particular design unit available for use in a particular design. Note that

the act of declaring a design unit, by definition, transforms your circuit

into a hierarchical design. The declaration of a design unit makes the unit

available to be placed into the design hierarchy. Design units are essentially

modules that reside in the lower levels of the design. For our design, we

need to declare two separate design units: the XOR gate and a 3-input

AND gate.

There are two factors involved in declaring a design unit: 1) how to do

it and, 2) where to place it. A component declaration can be viewed as

a modification of the associated entity declaration. The difference is that

the word entity is replaced with the word component and the word

component must also be followed by the word end component to ter-

minate the declaration. The best way to do this is by copying, pasting and

modifying the original entity declaration. The resulting component declar-

ation is placed in the architecture declaration after the architecture

line and before the begin line. The two component declarations and their

associated entity declarations are shown in the next listing. Listing 8.3

shows the component declarations as they appear in working VHDL code.

8.1 VHDL Modularity with Components 123

entity big_xnor is
Port (A,B : in std_logic;

F : out std_logic);
end big_xnor;

entity big_and3 is
Port (A,B,C : in std_logic;

F : out std_logic);
end big_and3;

component big_xnor
Port (A,B : in std_logic;

F : out std_logic);
end component;

component big_and3
Port (A,B,C : in std_logic;

F : out std_logic);
end component;

Step Three: The next step is to declare internal signals used by your

design. The required internal signals for this design are the signals that

are not intersected by the dashed line shown in Fig. 8.1. These three signals

are similar to local variables used in higher-level programming languages in

that they must be declared before they can be used in the design. These

signals effectively provide an interface between the various design units

that are instantiated in the final design. For this design, three signals are

required and used as outputs of the XOR gates and as inputs to the AND

gate. Internal signal declarations such as these appear with the compon-

ent declarations in the architecture declaration after the architecture

line and before the begin line. Note that the declaration of intermediate

signals is similar to the signal declaration contained in the entity body.

The only difference is that the intermediate signal declaration does not

contain the mode specifier. We have previously dealt with intermediate

signals in other sections of this book. Signal declarations are included as

part of the final solution shown in Listing 8.3.

Step Four: The final step is to create instances of the required modules

and map the instances of the various components in the architecture body.

Technically speaking, as the word instantiation implies, the appearance of

instances of design units is the main part of the instantiation process. In

some texts, the process of instantiation includes what we have referred

to as component declaration but we have opted not to do this here. The

approach presented here is to have the declaration refer to the component

declarations before the begin line while instantiation refers to the cre-

ation of individual instances after the begin line. The mapping process

is therefore included in our definition of component instantiation.

The process of mapping provides the interface requirements for the in-

124 Chapter 8: Structural Modeling In VHDL

dividual components in the design. This mapping step associates external

connections from each of the components to signals in the next step up-

wards in the design hierarchy. Each of the signals associated with indi-

vidual components maps to either an internal or external signal in the

higher-level design. Each of the individual mappings includes a unique

name for the particular instance as well as the name of the original entity.

The actual mapping information follows the VHDL key words of port

map. All of this information appears in the final solution shown in Listing

8.3.

One key point to note in the instantiation process is the inclusion of

labels for all instantiated design units. Labels should always be used as

part of design unit instantiation because the use of appropriate labels

increases the understandability of your VHDL model. In other words, the

proper choice of labels increases the self-describing nature of your design

and is considered a good VHDL programming approach.

8.1 VHDL Modularity with Components 125

Listing 8.3: VHDL code for the design hierarchy for the 3-bit comparator.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_compare is

Port (A_IN : in std_logic_vector(2 downto 0);
B_IN : in std_logic_vector(2 downto 0);
EQ_OUT : out std_logic);

end my_compare;
-- architecture
architecture ckt1 of my_compare is

-- XNOR gate --------------------
component big_xnor is

Port (A,B : in std_logic;
F : out std_logic);

end component;

-- 3-input AND gate -------------
component big_and3 is

Port (A,B,C : in std_logic;
F : out std_logic);

end component;

-- intermediate signal declaration
signal p1_out,p2_out,p3_out : std_logic;

begin
x1: big_xnor port map (A => A_IN(2),

B => B_IN(2),
F => p1_out);

x2: big_xnor port map (A => A_IN(1),
B => B_IN(1),
F => p2_out);

x3: big_xnor port map (A => A_IN(0),
B => B_IN(0),
F => p3_out);

a1: big_and3 port map (A => p1_out,
B => p2_out,
C => p3_out,
F => EQ_OUT);

end ckt1;

It is worth noting that the solution shown in Listing 8.3 is not the only

approach to use for the mapping process. The approach shown in Listing

8.3 uses what is referred to as a direct mapping of components. In

this manner, each of the signals in the interface of the design units are

listed and are directly associated with the signals they connect to in the

higher-level design by use of the => operator. This approach has several

potential advantages: it is explicit, complete, orderly and allows signals to

be listed in any order. The only possible downside of this approach is that

126 Chapter 8: Structural Modeling In VHDL

it uses up more space in your VHDL source code.

The alternative approach to mapping is to use implied mapping. In

this approach, connections between external signals from the design units

are associated with signals in the design unit by order of their appear-

ance in the mapping statement. This differs from direct mapping because

only signals from the higher-level design appear in the mapping state-

ment instead. The association between signals in the design units and the

higher-level design are implied by the ordering of the signal as they ap-

pear in the component or entity declaration. This approach uses less space

in the source code but requires signals to be placed in the proper order.

An alternative but equivalent architecture for the previous example using

implied mapping is shown in Listing 8.4.

To successfully simulate and synthesize the design shown in Listing 8.3,

the code of Listing 8.1 needs to be included in your VHDL project as well.

It is normal practice to keep the two listings in two distinctive files. The

same is true for the implementation of Listing 8.4.

Listing 8.4: Alternative architecture for Example 22 using implied mapping.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity my_compare is

Port (A_IN : in std_logic_vector(2 downto 0);
B_IN : in std_logic_vector(2 downto 0);
EQ_OUT : out std_logic);

end my_compare;
-- architecture
architecture ckt2 of my_compare is

component big_xnor is
Port (A,B : in std_logic;

F : out std_logic);
end component;

component big_and3 is
Port (A,B,C : in std_logic;

F : out std_logic);
end component;
signal p1_out,p2_out,p3_out : std_logic;

begin
x1: big_xnor port map (A_IN(2),B_IN(2),p1_out);
x2: big_xnor port map (A_IN(1),B_IN(1),p2_out);
x3: big_xnor port map (A_IN(0),B_IN(0),p3_out);
a1: big_and3 port map (p1_out,p2_out,p3_out,EQ_OUT);

end ckt2;

Due to the fact that this design was relatively simple, it was possible

to bypass one of the interesting issues that arises when using structural

8.2 Generic Map 127

modeling. Often when dealing with structural designs, different levels of

the design will contain the same signal name. The question arises as to

whether the synthesizer is able to differentiate between the signal names

across the hierarchy. VHDL synthesizers, like compilers for higher-level

languages, are able to handle such instances. Signals with the same names

are mapped according to the mapping presented in the component in-

stantiation statement. Probably the most common occurrence of this is

with clock signals. In this case, a component instantiation such as the one

shown in Listing 8.5 is both valid and commonly seen in designs contain-

ing a system clock. Name collision does not occur because the signal name

on the left-hand side of the => operator is understood to be internal to

the component while the signal on the right-hand side is understood to

reside in the next level up in the hierarchy.

Listing 8.5: Example of the same signal name crossing hierarchical boundaries.

x5: some_component port map (CLK => CLK,
CS => CS);

8.2 Generic Map

As we have seen in the previous section, the use of the keyword component

allows us to declare a VHDL module for further instantiation.

Often it is desirable to write code that is generic. For instance a routine

that perform a certain task on an input array of a generic size. Let us

suppose that we want to implement a piece of code of a parity check

routine that returns ’1’ when the input N-size array is an even number

and ’0’ when the input N-size array is an odd number. The Listing 8.6

shows such an implementation.

128 Chapter 8: Structural Modeling In VHDL

Listing 8.6: Parity check implementation with generic input array size.

1 -- library declarations
2 library IEEE;
3 use IEEE.std_logic_1164.all;
4 -- entity
5 entity gen_parity_check is
6 generic (n: positive);
7 port (x: in std_logic_vector(n-1 downto 0);
8 y: out std_logic);
9 end gen_parity_check;

10 -- architecture
11 architecture arch of gen_parity_check is
12 begin
13 process(x)
14 variable temp: std_logic;
15 begin
16 temp:='0';
17 for i in x'range loop
18 temp := temp XOR x(i);
19 end loop;
20 y <= temp;
21 end process;
22 end arch;

Listing 8.7 shows how the code above can be declared and instantiated

in your own code via the already see component method. Specifically, In

Listing 8.7 the above generic parity check module is used to create a 4-bit

parity check module.

To achieve the mentioned modularity the keyword generic was used

inside the entity field in the code above and again inside the component

field during its declaration in the code below. The generic field it is used

to allow you to control all generic variables.

Notice how during instantiation, Listing 8.7 line 20, the keyword generic

map was used in conjunction with the keyword port map to define the

generic variables.

8.3 Important Points 129

Listing 8.7: Use of generic for the construct of a generic parity check code.

1 -- library declaration
2 library IEEE;
3 use IEEE.std_logic_1164.all;
4 -- entity
5 entity my_parity_chk is
6 Port (input : in std_logic_vector(3 downto 0);
7 output : out std_logic);
8 end my_parity_chk;
9

10 -- architecture
11 architecture arch of my_parity_chk is
12 --------------- component declaration --------------------
13 component gen_parity_check is
14 generic (std_logic : positive);
15 port (input : in std_logic_vector(N-1 downto 0);
16 output : out std_logic);
17 end component;
18 begin
19 -------------- component instantiation -------------------
20 cp1: my_parity_chk generic map (4) port map (input, output);
21 end arch;

Once again, to successfully simulate and synthesize the design shown in

Listing 8.7, the code of Listing 8.6 needs to be included in your VHDL

project as well.

8.3 Important Points

• Structural modeling in VHDL supports hierarchical design concepts.

The ability to abstract digital circuits to higher levels is the key to

understanding and designing complex digital circuits.

• Digital design using schematic capture is an outdated approach: you

should resist the inclination and/or directive at all costs.

• The VHDL structural model supports the reuse of design units. This

includes units you have previously designed as well as the ability to

use predefined module libraries.

• If you use one FPGA software development tool from one of the ma-

jor FPGA players in the market, you will be able to use digital blocks

already developed once you declare them. In this case the entity declar-

ation is not the one of Listing 8.2 but instead a simple library inclusion

130 Chapter 8: Structural Modeling In VHDL

in your VHDL code that looks like:

library UNISIM;

use UNISIM.VComponents.all;

All digital blocks available from this library package are described in

the documentation of the FPGA software development tool (e.g. Xilinx

ISE).

8.4 Exercises: Structural Modeling

EXERCISE 1. Draw a block diagram of the circuit represented by the

VHDL code listed below. Be sure to completely label the final diagram.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity ckt1 is

Port (EN1, EN2 : in std_logic;
CLK : in std_logic;
Z : out std_logic);

end ckt1;
-- architecture
architecture arch of ckt1 is

component T_FF
port (T,CLK : in std_logic;

Q : out std_logic);
end component;

signal t_in, t1_s, t2_s : std_logic;
begin

t1 : T_FF
port map (T => t_in,

CLK => CLK,
Q => t1_s);

t2 : T_FF
port map (T => t1_s,

CLK => CLK,
Q => t2_s);

Z <= t2_s OR t1_s;
t_in <= EN1 AND EN2;

end arch;

8.4 Exercises: Structural Modeling 131

EXERCISE 2. Draw a block diagram of the circuit represented by the

VHDL code listed below. Be sure to completely label the final diagram.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity ckt is

port (A,B : in std_logic;
C : out std_logic);

end ckt;
-- architecture
architecture my_ckt of ckt is

component bb1
port (D,E : in std_logic;

F,G,H : out std_logic);
end component;

component bb2
port (L,M,N : in std_logic;

P : out std_logic);
end component;

signal x1,x2,x3 : std_logic;
begin

b1: bb1
port map (D => A, E => B, F => x1, G => x2, H => x3);

b2: bb2
port map (L => x1, M => x2, N => x3, P => C);

end my_ckt;

EXERCISE 3. Provide the VHDL structural models for the circuits

listed below.

a) b)

c) d)

9
Registers and Register Transfer Level

The concept of a register in VHDL and its subsequent use in digital circuit

design is probably one of the more straightforward concepts in VHDL. A

register in VHDL is simply a vector version of a D flip-flop in which all

operations on the flip-flops occur simultaneously. The “register transfer

level”, or RTL, is a flavor of design that is primarily concerned with how

and when data is transferred between the various registers in a digital

system. RTL-level design in often associated with ”data-path” designs

which require the careful control and timing of the data that is being

transferred between registers. The controls associated with even simple

registers are sufficient to ensure that some outside entity has adequate

control over the ”sequencing” of data through the circuit associated with

the data-path. In these cases, the proper sequencing of data transfers is

controlled by a FSM.

The study of RTL-level design is best accomplished in the context of a

data-path design. The design of data-paths is best accomplished in the

context of a digital circuit that has some purpose such as an arithmetic

logic unit design. Both of these topics are beyond what needs to be men-

tioned here. The good news is that the simplicity of the registers makes

for a quick introduction to the matter. Major circuit implementations are

saved for some other time.

134 Chapter 9: Registers and Register Transfer Level

EXAMPLE 23. Use VHDL beha-

vioral modeling to design the 8-bit

register that has a synchronous act-

ive high parallel load signal LD. Con-

sider the load of the register to be

synchronized to rising edges of the

clock.

SOLUTION. The solution for the 8-bit register looks amazingly similar

to a model of a D flip-flop. The full solution to Example 23 is shown in

Listing 9.1. As usual, there are a couple of things worth noting in this

solution.

• Note that there is an if statement that does not contain a corres-

ponding else which is what generates the memory element. For this

example, there are considered to be eight bit-sized memory elements

(flip-flops). For this example the flip flops are considered to be D-

type flip-flops. The storage elements are associated with the REG OUT

bundle. The ease in using VHDL code to generate D flip-flops in this

manner makes D flip-flops the most widely used type of flip-flop in

digital design.

• The code uses a bundle signal for both the input and output. The

assignment of the bundles to other bundles is straightforward in VHDL

as is shown in the code. In many cases, such as the one in this example,

there is no need to use a bundle access operator in the VHDL model.

• The assignment of the input to the output is based on characteristics of

both the clock edge and the state of the LD signal. The approach taken

in the VHDL model shown in Listing 9.1 is to provide a separate if

clause for both the LD and CLK signals. Only one if statement could

have been used by making both conditions associated with the single

if clause but this is not considered good VHDL programming practice

when dealing with synchronized elements. In other words, you should

always strive to keep special conditions associated with the clocking

signal separate from all other conditions associated with the action in

135

question. Clock signals are somewhat special in the VHDL land; you

should get into the habit of treating them gently.

• Since signals REG IN and LD are required to be synchronous they do

not appear inside the process sensitivity list.

Listing 9.1: Solution to Example 23.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity reg8 is

Port (REG_IN : in std_logic_vector(7 downto 0);
LD,CLK : in std_logic;
REG_OUT : out std_logic_vector(7 downto 0));

end reg8;
-- architecture
architecture reg8 of reg8 is
begin

reg: process(CLK)
begin

if (rising_edge(CLK)) then
if (LD = '1') then

REG_OUT <= REG_IN;
end if;

end if;
end process;

end reg8;

The circuit in the following example is slightly more complex than most

of the examples seen so far. Additionally, remember that there are many

different solutions to the same problem. This is a common occurrence in

VHDL; in fact, many times there is no best method for implementing a

given circuit. The following examples are essentially the same problem

solved using two different but functionally equivalent solutions.

EXAMPLE 24. Use VHDL beha-

vioral modeling to design the cir-

cuit shown on the right. Consider

both the loading signals to be act-

ive high. Consider the circuit to be

synchronized to the rising edge of

the clock signal.

SOLUTION. The circuit shown in Example 24 includes two 8-bit re-

gisters and a 2:1 MUX. This is an example of a bus-based data transfer in

136 Chapter 9: Registers and Register Transfer Level

the output of the MUX that is connected to the inputs of the two registers.

Each of the two registers has its own independent load control input. The

solution to Example 24 is shown in Listing 9.1. And as we have grown to

expect, there are a couple of things worth noting about this solution.

• There are three concurrent statements in this solution: two behavioral

models and one data-flow model.

• There is a separate process for each of the two registers. Although it

would have been possible to represent both registers using one pro-

cess, it would have been somewhat complicated and somewhat hard

to understand. The better approach in VHDL is always to break tasks

down into their logically separate functions and use the various VHDL

modeling techniques as tools to keep the tasks separate and simple.

The reality is that the synthesizer becomes your friend if you provide

it with simple models. The quantity of VHDL code describing a certain

design is immaterial; the complexity of any given model is determined

by the most complex piece of code in the model. Simple is always better

in VHDL.

• All of signals shown in the Example 24 have external linkage except for

the output of the MUX. The MUX output is connected to the inputs

of both registers. The final approach taken in this solution is typical

in VHDL: many processes that communicate with each other through

shared signals. In this example, there is only one shared signal but

this is a fairly simple program. The same inter-process communication

model is used in more complicated circuits.

• The model for the 2:1 MUX uses the terminology (others => ’0’).

This is a short-hand terminology for assigning all of the outputs to ’0’.

The real nice part about this instruction is that you do not need to

know how many 0’s you need to write. This is a nice feature in that if

the width of the associated bundle were to change, this particular line

of code would not need to be modified.

137

Listing 9.2: Solution to Example 24.

-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- entity
entity ckt_rtl is

port (D1_IN,D2_IN : in std_logic_vector(7 downto 0);
CLK,SEL : in std_logic;
LDA,LDB : in std_logic;

REG_A,REG_B : out std_logic_vector(7 downto 0));
end ckt_rtl;
-- architecture
architecture rtl_behavioral of ckt_rtl is

-- intermediate signal declaration ---------------
signal s_mux_result : std_logic_vector(7 downto 0);

begin

ra: process(CLK) -- process
begin

if (rising_edge(CLK)) then
if (LDA = '1') then

REG_A <= s_mux_result;
end if;

end if;
end process;

rb: process(CLK) -- process
begin

if (rising_edge(CLK)) then
if (LDB = '1') then

REG_B <= s_mux_result;
end if;

end if;
end process;

with SEL select
s_mux_result <= D1_IN when '1',

D2_IN when '0',
(others => '0') when others;

end rtl_behavioral;

EXAMPLE 25. Use VHDL struc-

tural modeling to design the circuit

shown on the right. Consider both

of the loading signals to be active

high. Consider the circuit to be syn-

chronized to the rising edge of the

clock signal.

SOLUTION. The solution to Example 25 is shown in Listing 9.3. There

is not too much interesting to note here. This is a more realistic example

of a structural model compared to the example presented in the section

138 Chapter 9: Registers and Register Transfer Level

on structural modeling. There are only a few new and wonderful things

to note about this solution.

• The very important thing to note about the solution in Listing 9.3 is

to not be intimidated by the sheer quantity of code listed. The code

is well structured; if you are able to recognize this structure, you will

be more apt to understand the solution. And better yet, you will be

more on your way to being able to write your own amazing chunks of

VHDL code.

• The VHDL source code shown in Listing 9.3 is nicely formatted. In par-

ticular, the code is nicely indented. Properly indented code is highly

desirable in that it nicely presents information based on the indent-

ation. No surprise here but properly formatted code is easier to un-

derstand. Better yet, good looking code leads people who may or may

not know otherwise into thinking your code is as actually as good as

it looks. In this busy world of ours, a quick glance is just about all the

time people (bosses and teachers) have to dedicate to perusing your

VHDL source code.

139

Listing 9.3: Solution to Example 25 using a structural modeling approach.

entity mux2t1 is --- ENTITY
port (A,B : in std_logic_vector(7 downto 0);

SEL : in std_logic;
M_OUT : out std_logic_vector(7 downto 0));

end mux2t1;
architecture my_mux of mux2t1 is --- ARCHITECTURE
begin

with SEL select
M_OUT <= A when '1',

B when '0',
(others => '0') when others;

end my_mux;
entity reg8 is --- ENTITY

Port (REG_IN : in std_logic_vector(7 downto 0);
LD,CLK : in std_logic;
REG_OUT : out std_logic_vector(7 downto 0));

end reg8;
architecture reg8 of reg8 is --- ARCHITECTURE
begin

reg: process(CLK)
begin

if (rising_edge(CLK)) then
if (LD = '1') then

REG_OUT <= REG_IN;
end if;

end if;
end process;

end reg8;
entity ckt_rtl is --- ENTITY

port (D1_IN,D2_IN : in std_logic_vector(7 downto 0);
CLK,SEL : in std_logic;
LDA,LDB : in std_logic;

REG_A,REG_B : out std_logic_vector(7 downto 0));
end ckt_rtl;
architecture rtl_structural of ckt_rtl is --- ARCHITECTURE

-- component declaration
component mux2t1

port (A,B : in std_logic_vector(7 downto 0);
SEL : in std_logic;

M_OUT : out std_logic_vector(7 downto 0));
end component;
component reg8

Port (REG_IN : in std_logic_vector(7 downto 0);
LD,CLK : in std_logic;
REG_OUT : out std_logic_vector(7 downto 0));

end component;
-- intermediate signal declaration
signal s_mux_result : std_logic_vector(7 downto 0);

begin
ra: reg8
port map (REG_IN => s_mux_result,

LD => LDA,
CLK => CLK,

REG_OUT => REG_A);
rb: reg8
port map (REG_IN => s_mux_result,

LD => LDB,
CLK => CLK,

REG_OUT => REG_B);
m1: mux2t1
port map (A => D1_IN,

B => D2_IN,
SEL => SEL,

M_OUT => s_mux_result);
end rtl_structural;

140 Chapter 9: Registers and Register Transfer Level

9.1 Important Points

• VHDL can be used to easily implement circuits at the register transfer

level. The corresponding VHDL models can be implemented in either

structural of full behavioral format.

• RTL level VHDL models should strive for simplicity in their designs.

If the behavioral models in the RTL design become complicated, the

chances that your circuit works correctly greatly diminish due to the

synthesis of the complicated circuit.

9.2 Exercises: Register Transfer Level Circuits

EXERCISE 1. Provide a VHDL

model that can be used to implement

the following circuit.

EXERCISE 2. Provide a VHDL

model that can be used to implement

the following circuit.

EXERCISE 3. Provide a VHDL

model that can be used to implement

the following circuit.

9.2 Exercises: Register Transfer Level Circuits 141

EXERCISE 4. Provide a VHDL

model that can be used to implement

the following circuit.

EXERCISE 5. Provide a VHDL

model that can be used to implement

the following circuit.

EXERCISE 6. Provide a VHDL

model that can be used to implement

the following circuit.

10
Data Objects

Many of the concepts presented so far have been implicitly presented in

the context of example problems. In this way, you have probably been able

to generate quality VHDL code but were constrained to use the VHDL

style presented in these examples. In this section, we will present some

of the underlying details and theories that surround VHDL as a back-

door approach for presenting tools that will allow you to use VHDL for

describing the behavior of more complex digital circuits.

In order to move into more sophisticated VHDL, a good place to start

is with the definition of VHDL objects (e.g. data types). An object is an

item in VHDL that has both a name (associated identifier) and a specific

type. There are four types of objects and many different data types in

VHDL. Up to this point, we have only used signal data objects and

std logic data types. Two new data objects and several new data types

are introduced and discussed in this section.

10.1 Types of Data Objects

There are four types of data objects in VHDL: signals, variables, con-

stants and files. One of the purposes of this section is to present some

background information regarding variables which will be used later in this

tutorial. The idea of constants will also be briefly mentioned since they

are generally straightforward to understand and use once the concepts of

signals and variables are understood. File data objects, exclusively used

144 Chapter 10: Data Objects

in simulations, are not discussed in this chapter.

Mind that VHDL is a vast language that goes well beyond the VHDL

code that is used to program an FPGA or a CPLD. In fact the actual

VHDL that can be translated into an FPGA/CPLD bit-stream is called

RTL VHDL and represents only a small subset of what is included in the

current VHDL standard. The file data objects are an example of a data

object that cannot be implemented in a silicon device.

Just as side note, it is interesting to point out that it is also possible to

compile VHDL code into an executable file that can be executed, generally

for simulation purposes, with any general purpose Intel PC. For more

details refer to the open-source work of T. Gingold available at:

http://ghdl.free.fr.

10.2 Data Object Declarations

The first thing to note about data objects is the similarity in their de-

clarations. The forms for the three data objects we will be discussing are

listed in Table 10.1. For each of these declarations, the bold-face font is

used to indicate VHDL keywords. The form for the signal object should

seem familiar since we have used it extensively up to this point.

VHDL data object Declaration form

Signal signal sig name : sig type:=initial value;

Variable variable var name : var type:=initial value;

Constant constant const name : const type:=initial value;

Table 10.1: Data object declaration forms.

Note that each of the data objects can optionally be assigned initial

values. Signal declarations do not usually include initial values as opposed

to constants which generally do.

Initial values for signals are in fact not implementable on silicon by the

synthesizing tools but are taken into consideration by VHDL simulation

tools. Example declarations for these three flavors of data objects are

provided in Table 10.2. These examples include several new data types

which will be discussed in the next section.

http://ghdl.free.fr

10.3 Variables and Assignment Operator “:=” 145

Data object Declaration form

Signal signal sig var1 : std logic := ’0’;

signal tmp bus : std logic vector(3 downto 0):="0011";

signal tmp int : integer range -128 to 127 := 0;

signal my int : integer;

Variable variable my var1, my var2 : std logic;

variable index a : integer range (0 to 255) := 0;

variable index b : integer := -34;

Constant constant sel val : std logic vector(2 downto 0):="001";

constant max cnt : integer := 12;

Table 10.2: Example declarations for signal, variable and constant data objects.

10.3 Variables and Assignment Operator “:=”

Although variables are similar to signals, variables are not as functional

for the several reasons mentioned in this section. Variables can only be

declared and used inside of processes, functions and procedures (functions

and procedures will not be discussed here). Implied in this statement is the

sequential nature of variable assignment statements in that all statements

appearing in the body of a process are sequential. One of the early mistakes

made by VHDL programmers is attempting to use variables outside of

processes.

The signal assignment operator, <=, was used to transfer the value of

one signal to another while dealing with signal data objects. When working

with variables, the assignment operator := is used to transfer the value

of one variable data object to another. As you can see from Table 10.2,

the assignment operator is overloaded which allows it to be used to assign

initial values to the three listed forms of data objects.

10.4 Signals vs. Variables

The use of signals and variables can be somewhat confusing because of

their similarities. Generally speaking, a signal can be thought of as rep-

resenting a wire or some type of physical connection in a design. Signals

thus represent a means to interface VHDL modules which include connec-

tions to the outside world. In terms of circuit simulation, signals can be

scheduled to take on multiple values at specific times in the simulation.

146 Chapter 10: Data Objects

The specifics of simulating circuits using VHDL are not covered here so

the last statement may not carry much meaning to you. The important

difference here is that events can be scheduled for signals while for vari-

ables, they cannot. The assignment of variables is considered to happen

immediately and cannot have a list of scheduled events.

With relatively simple circuits, signal objects are generally sufficient. As

your digital designs become more complex, there is a greater chance that

you will need more control of your models than signals alone can provide.

The main characteristic of signals that leave them somewhat limited in

complex designs is when and how they are scheduled. More specifically,

assignments made to signals inside a process are actually only

scheduled when the same process is completed. The actual as-

signment is not made until after the process terminates. This is

why multiple signal assignments can be made to the same signal during

the execution of a process without generating any type of synthesis error.

In the case of multiple signal assignments inside the process, only the most

recent assignment to the signal during process execution is assigned. The

important thing here is that the signal assignment is not made until after

the process terminates. The potential problem that you might face is that

the new result (the new value assigned to the signal) is not available to

use inside the process.

Variable assignment within processes is different. When a variable is

assigned a value inside of a process, the assignment is immediate and the

newly assigned value can be used immediately inside of the process. In

other words, the variable assignment is not scheduled as it was for the

signal. This is a giant difference and has very important ramifications in

both the circuit simulation and synthesis realm.

Variables cannot always be modeled as wires in a circuit. They also have

no concept of memory since they cannot store events. With all this in

mind, you may wonder what is the appropriate place to use variables.

The answer is variables should only be used as iteration counters in loops

or as temporary values when executing an algorithm that performs some

type of calculation. It is possible to use variables outside of these areas,

but it should be avoided.

10.5 Standard Data Types 147

Even though instructions inside a process are executed consecutively,

this should not fool you in thinking that a process environment is similar

to a segment of C code. Remember that while lines of C code require some

tens of clock cycles each to be executed, VHDL instructions require very

little time to be executed, less than one clock cycle. The price to pay for

this enormously fast execution time is that any signal assignment inside a

process only takes place at the end of the process. It is therefore advisable

that your processes are short and simple.

10.5 Standard Data Types

Not only does VHDL have many defined data types but VHDL also allows

you to define your own types. Here however we will only deal with few of

the most widely used types. Among the most popular VHDL data type

we would like to mention the following data types:

bit: It is a two-value enumerated type. Replaced by the std logic type.

bit vector: Replaced by the more powerful std logic vector type.

boolean: As expected, it is a two-value enumerated type.

boolean vector: It is the vector form of a boolean type.

integer: Refer to the Integer Types section.

natural: It is a subtype of integer because it is a non-negative integer.

positive: It is a subtype of integer because it is a positive integer.

integer vector: It is the vector form of an integer type.

character: A 256-symbol enumerated type.

string: It is the vector form of a character type.

In the following sections, a few more popular and useful types are intro-

duced.

10.6 User-Defined Types

VHDL allows you to define your own data type. A typical example of a

custom integer type is:

type my type is range 0 to 100;

constant my const : my type := 31;

148 Chapter 10: Data Objects

Obviously it is possible to define more complex data structures. For in-

stance it is a common practice to use a custom data type when you want

to implement a ROM (read-only memory) in VHDL.

-- typical custom data type for a 20-byte ROM
type memory is array (0 to 19 of std_logic_vector(7 downto 0);
constant my_rom : memory := (

1 => "11111111"
2 => "11110111"
5 => "11001111"
12 => "10110101"
18 => "10001101"

others => "00000000");

10.7 Commonly Used Types

The types already introduced in previous chapters as well as two new types

are listed in Table 10.3. The std logic and std logic vector types

have been extensively used so far. These types are more complex than has

been previously stated and will be discussed further in this chapter. The

enumerated type was used during the previous discussion of finite state

machines. The integer type was cryptically mentioned before but it will

be discussed further along with the boolean type in this chapter.

Type Example Usage

std logic signal my sig : std logic; all examples

std logic vectors signal busA : std logic vector(3 downto 0); all examples

enumerated type state type is (ST0,ST1,ST2,ST3); Example 18

boolean variable my test : boolean := false; None

integer signal iter cnt : integer := 0; Example 26

Table 10.3: Some popular data types already introduced in previous chapters.

10.8 Integer Types

The use of integer types aids in the design of algorithmic-type VHDL code.

This type of coding allows VHDL to describe the behaviour of complex

digital circuits. As you progress in your digital studies, you will soon find

yourself in need of more complex descriptive VHDL tools. Data types such

as integers partially fill that desire. This section briefly looks at integer

types as well as the definition of user-specified integer types.

10.8 Integer Types 149

The range of the integer type is (-2,147,483,648 to 2,147,483,647). These

numbers should seem familiar since they represent the standard 32-bit

range for a signed number: from −(231) to +(231−1). Other types similar

to integers include natural and positive types. These types are basically

integers with shifted ranges. For example, the natural and positive types

range from 0 and 1 to the full 31-bit range, respectively. Examples of

integer declarations are shown in the following listing.

-- integer declarations
signal my_int : integer range 0 to 255 := 0;
variable max_range : integer := 255;
constant start_addr : integer := 512;

Although it could be possible to use only basic integer declarations in

your code, as we have seen before, VHDL allows you to define your own

data types with their own personalized range constraints. These special

types should be used wherever possible to make your code more readable.

The custom integer-type definition uses the type range construct and the

to or the downto keywords for the definition. Some examples of integer-

type declarations are provided in the following listing.

-- integer type declarations
type scores is range 0 to 100;
type years is range -3000 to 3000;
type apples is range 0 to 15;
type oranges is range 0 to 15;

Although each of the types listed in the previous listing are basically

integers, they are still considered different types and cannot be assigned to

each other. In addition to this, any worthy VHDL synthesizer will do range

checks on your integer types. In the context of the definitions previously

presented, each of the statements in the following listing is illegal.

-- Illegal assignment statements
signal score1 : scores := 100;
signal my_apple : apples := 0;
signal my_orange : oranges := 0;

my_apple <= my_orange; -- different types
my_orange <= 24; -- out of range
my_score <= 110; -- out of range

150 Chapter 10: Data Objects

10.9 signed and unsigned Types

signed and unsigned data types are available once you declare the

standard IEEE ieee.numeric std package. Mind that these two data

types are also defined in the non-standard std logic arith package.

The use of non-standard libraries is however highly discouraged.

A signed value ranges from −2N−1 to 2N−1 − 1 and an unsigned

value ranges from 0 to 2N − 1 where N is the number of bits.

signed and unsigned types can be conveniently used for internal vari-

ables as well as for entity ports. Additionally the ieee.numeric signed

library and the ieee.numeric unsigned library offer arithmetic and

type conversion for both types.

signed and unsigned types, in a way, look like std logic vector

types, especially in how they are declared and so the question that you

might have is:

Why would I need to use a signed or unsigned

type in place of a std logic vector type?

The answer to this question is in Listing 10.1, specifically in line 17 and

in line 18. The std logic vector type should not be used to define a

numerically meaningful1 signal or variable. The std logic vector type

should be only employed for defining “bags of bits”.

The use of signed/unsigned types is desirable any time your bags

of bits (signals, variables or constants) stop being “bags” and become

numbers of type signed, unsigned or even integers.

1Numerically meaningful signal: a signal that looks and behave like a number.

10.10 std logic Types 151

Listing 10.1: Use of unsigned types in your code.

1 -- library declaration
2 library IEEE;
3 use IEEE.std_logic_1164.all; -- defines std_logic_vector type
4 use IEEE.numeric_std.all; -- defines signed and unsigned types
5 -- entity
6 entity double_sum is
7 Port (
8 in1 : in std_logic_vector (7 downto 0);
9 in2 : in std_logic_vector (7 downto 0);

10 out1 : out std_logic_vector (7 downto 0));
11 unsig_in : in unsigned(7 downto 0);
12 unsig_out : out unsigned(7 downto 0));
13 end double_sum;
14 -- architecture
15 architecture arch of sum is
16 begin
17 out1 <= in1 + 1; -- ILLEGAL OPERATION, 1 is an integer
18 out1 <= in1 + in2;-- ILLEGAL OPERATION, addition is not defined
19 unsig_out <= unsig_in + 1; -- legal operation
20 unsig_out <= unsigned(in1) + 1; -- legal operation
21 out1 <= std_logic_vector(unsigned(in1) + 1);-- legal operation
22 end arch;

As final note, we should mention that the inclusion of the non-standard

std logic arith library could have given us the possibility of doing

out1 <= in1 + 1; in line 17 of Listing 10.1, making things much sim-

pler. However, once again, the use of non-standard library is highly dis-

couraged.

10.10 std logic Types

For the representation of digital signals so far in this book, we have

used the std logic type. However, one of the data types, similar to

std logic, neither used nor endorsed in this book is the bit type. This

type can take on only the values of ’1’ or ’0’. While this set of values

seems appropriate for designing digital circuits, it is actually somewhat

limited. Due to its versatility and a more complete range of possible values,

the std logic type is preferred over bit types. The std logic type

is defined in the VHDL package ieee.std logic 1164 and provides a

common standard that can be used by all VHDL programmers.

The std logic type is officially defined as an enumerated type. Two

of the possible enumerations of course include ’1’ and ’0’. The ac-

tual definition is shown in the Listing 10.2. The std logic type is a

resolved version of the std ulogic type. Resolved means that unlike for

std ulogic types, when you use std logic type signals, you can use

152 Chapter 10: Data Objects

multiple assignments to the same signal without having the compile to

complain about it.

Listing 10.2: Declaration of the std logic enumerated type.

type std_logic is ('U', -- uninitialised
'X', -- forcing unknown
'0', -- forcing 0
'1', -- forcing 1
'Z', -- high impedance
'W', -- weak unknown
'L', -- weak 0
'H', -- weak 1
'-' -- unspecified (do not care)

);

The std logic type uses the VHDL character type in its definition.

Although there are nine values in the definition shown in Listing 10.2, this

book only deals with ’0’, ’1’, ’Z’ and ’-’. The ’Z’ is generally used

when dealing with bus structures. This allows a signal or set of signals (a

bus) to have the possibility of being driven by multiple sources without

the need to generate resolution functions. When a signal is driven to its

high-impedance state, the signal is not driven from that source and is

effectively removed from the circuit. Finally, since the characters used in

the std logic type are part of the definition, they must be used as listed.

Mind the use of lower-case letters will generate an error.

EXAMPLE 26. Design a clock di-

vider circuit that reduces the fre-

quency of the input signal by a factor

of 64. The circuit has two inputs as

shown in the diagram. The div en

input allows the clk signal to be di-

vided when asserted and the sclk

output will exhibit a frequency 1/64

that of the clk signal. When div en

is not asserted, the sclk output re-

mains low. Frequency division resets

when the div en signal is reasserted.

clk div

clk

div en

sclk

SOLUTION. As usual for more complex concepts and circuits, there are

10.10 std logic Types 153

a seemingly infinite number of solutions. A solution that uses several of

the concepts discussed in this section is presented in Listing 10.3. Some

of the more important issues in this solution are listed below.

• The type declaration for my count appears in the architecture body

before the begin statement.

• A constant is used for the max count variable. This allows for quick

adjustments in the clock frequency. In this example, this concept is

somewhat trivial because the max count variable is used only once.

• The variable is declared inside of the process, after the process begin

line.

Listing 10.3: Solution to Example 26.

1

2 -- library declaration
3 library IEEE;
4 use IEEE.std_logic_1164.all;
5 use IEEE.numeric_std.all;
6

7 -- entity
8 entity clk_div is
9 Port (

10 clk : in std_logic;
11 div_en : in std_logic;
12 sclk : out std_logic);
13 end clk_div;
14

15 -- architecture
16 architecture my_clk_div of clk_div is
17 type my_count is range 0 to 100; -- user-defined type
18 constant max_count : my_count := 31; -- user-defined constant
19 signal tmp_sclk : std_logic; -- intermediate signal
20 begin
21 my_div: process (clk,div_en)
22 variable div_count : my_count := 0;
23 begin
24 if (div_en = '0') then
25 div_count := 0;
26 tmp_sclk <= '0';
27 elsif (rising_edge(clk)) then
28 -- divider enabled
29 if (div_count = max_count) then
30 tmp_sclk <= not tmp_sclk; -- toggle output
31 div_count := 0; -- reset count
32 else
33 div_count := div_count + 1; -- count
34 end if;
35 end if;
36 end process my_div;
37 sclk <= tmp_sclk; -- final assignment
38 end my_clk_div;

The VHDL implementation of frequency divider that takes a certain

154 Chapter 10: Data Objects

clock signal and generates a second clock signal of higher or lower fre-

quency is quite common practise in VHDL. Such an implementation is

normally done using clock management blocks built in the FPGA fabric

specifically for this purpose. Digital Clock Managers (DCM), Mixed Mode

Clock Managers (MMCM) or Phase Locked Loops (PLL) are just some

examples.

The use of clock management blocks will guarantee your design meets

timing requirements or clock phase noise constraints that will make your

job a lot easier in the long run. Try to remember this.

10.11 Important Points

• The use of signed/unsigned types is desirable any time your “bags

of bits” (signals, variables or constants) stop being “bags” and become

numbers of type signed, unsigned or even integers. A typical example

is the variable used for a counter for which there is really no reason

to use a std logic vector type for. Refer to line 17, 22 and 33 of

Listing 10.3.

• The standard IEEE library numeric std is needed when you want

to use signed and/or unsigned types. The standard IEEE library

numeric std is almost always preferred over the non-standard

std logic arith library.

• Any use of the non-standard Synopsys libraries: std logic signed,

std logic unsigned and std logic arith is highly discouraged.

• You cannot increment a std logic vector type signal, you need to

first convert it into an unsigned, a signed or an integer:

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all

signal val1, val2 : std_logic_vector(31 downto 0);
val2 <= val1 + 1; -- ILLEGAL OPERATION
val2 <= std_logic_vector(unsigned(val1) + 1);

11
Looping Constructs

As the circuits you are required to design become more and more com-

plex, you will find yourself searching for more functionality and versatility

from VHDL. You will probably find what you are looking for in various

looping constructs which are yet another form of VHDL statement. This

chapter provides descriptions of several types of looping constructs and

some details regarding their use.

There are two types of loops in VHDL: for loops and while loops.

The names of these loops should seem familiar from your experience with

higher-level computer programming languages. Generally speaking, you

can leverage your previous experience with these loop types when describ-

ing the behavior of digital circuits. The comforting part is that since these

two types of loops are both sequential statements, they can only appear

inside processes. You will also be able to apply to the circuits you will be

describing using VHDL the algorithmic thinking and designing skills you

developed in coding with higher-level computer languages. The syntax is

slightly different but the basic structured programming concepts are the

same.

11.1 for and while Loops

The purpose of a loop construct is to allow some coding instructions to

happen iteratively (over and over again). These two types of loops of

course share this functionality. As you probably remember from higher-

156 Chapter 11: Looping Constructs

level language programming, the syntax of the language is such that you

can use either type of loop in any given situation by some modification of

the code. The same is true in VHDL. But although you can be clever in the

way you design your VHDL code, the best approach is to make the code

readable and understandable. Keeping this concept in mind lets us see the

functional differences between for and while loops. This basic difference

can be best highlighted by examining the code provided in Listing 11.1.

Listing 11.1: The basic structure of the for and while loops.

-- for loop | -- while loop
my_label: for index in a_range loop | my_label: while (condition) loop

sequential statements... | sequential statements...
end loop my_label; | end loop my_label;

The major difference between these two loops lies in the number of

iterations the loops will perform. This difference can be classified as under

what conditions the circuit will terminate its iterations. If you know the

number of iterations the loop requires, you should use a for loop. As you

will see in the examples that follow, the for loop allows you to explicitly

state the number of iterations that the loop performs.

The while loop should be used when you do not know the number of

iterations the loop needs to perform. In this case, the loop stops iterating

when the terms stated in the condition clause are not met. Using these

loops in this manner constitutes a good programming practice. The loop

labels are listed in italics to indicate that they are optional. These labels

should be always used to clarify the associated VHDL code. Use of loop

labels is an especially good idea when nested loops are used and when

loop control statements are applied.

11.1.1 for Loops

The basic form of the for loop was shown in Listing 11.1. This loop uses

some type of index value to iterate through a range of discrete values.

There are two options that can be applied as to the range of discrete

values: 1) the range can be specified in the for loop statement or 2) the

loop can use a previously declared range. Hereafter you find an example.

11.1 for and while Loops 157

for cnt_val in 0 to 24 loop
-- sequential_statements

end loop;

type my_range is range 0 to 24;
--
for cnt_val in my_range loop

-- sequential_statements
end loop;

for cnt_val in 24 downto 0 loop
-- sequential_statements

end loop;

type my_range is range 24 downto 0;
--
for cnt_val in my_range loop

-- sequential_statements
end loop

The index variable used in the for loop contains some strange qualities

which are listed below. Although your VHDL synthesizer should be able

to flag these errors, you should still keep these in mind when you use a

for loop and you will save yourself a bunch of debugging time. Also note

that the loop body has been indented to make the code more readable.

Enhanced readability of the code is always a good thing.

• The index variable does not need to be declared, it is in fact done

implicitly.

• Assignments cannot be made to the index variable. The index variable

can, however, be used in calculations within the loop body.

• The index variable can only step through the loop in increments of

one.

• The identifier used for the index variable can be the same as another

variable or signal; no name collisions will occur. The index variable

will effectively hide identifiers with the same name inside the body of

the loop. Using the same identifier for two different values constitutes

bad programming practice and should be avoided.

• The specified range for the index (when specified outside of the loop

declaration) can be of any enumerated type.

And lastly, as shown in the previous listing, for loops can also be im-

plemented using the downto option. This option makes more sense when

the range is specified in the for loop declaration.

158 Chapter 11: Looping Constructs

11.1.2 while Loops

while loops are somewhat simpler than for loops due to the fact that

they do not contain an index variable. The major difference between the

for and while loops is that the for loop declaration contains a built-

in loop termination criteria. The first thing you should remember about

while loops is that the associated code should contain some way of exiting

the loop. Examples of while loops are shown in the following listing.

Needless to say that the VHDL code appearing in the next listing on the

right should have been made with a for loop instead of a while loop

because the number of iterations is actually known.

constant max_fib : integer := 2000;
variable fib_sum : integer := 1;
variable tmp_sum : integer := 0;

while (fib_sum < max_fib) loop
fib_sum := fib_sum + tmp_sum;
tmp_sum := fib_sum;

end loop;
--

constant max_num : integer := 10;
variable fib_sum : integer := 1;
variable tmp_sum : integer := 0;
variable int_cnt : integer := 0;

while (int_cnt < max_num) loop
fib_sum := fib_sum + tmp_sum;
tmp_sum := fib_sum;
int_cnt := int_cnt + 1;

end loop;

11.1.3 Loop Control: next and exit Statements

Similarly to higher-level computer languages, VHDL provides some extra

loop control options. These options include the next statement and the

exit statement. These statements are similar to their counterparts in

higher-level languages in the control they can exert over loops. These two

loop-control constructs are available for use in either the for or the while

loop.

next Statement

The next statement allows for the loop to bypass the remaining statements

within the body of the loop and start immediately at the next iteration. In

for loops, the index variable is incremented automatically before the start

of the upcoming iteration. In while loops, it is up to the programmer to

ensure that the loop operates properly when the next statement is used.

There are two forms of the next statement and both forms are shown

in the next listing. These are two examples that use the next statement

11.1 for and while Loops 159

and do not necessarily represent a good programming practice nor really

contain meaningful code.

variable my_sum : integer := 0;
--
for cnt_val in 0 to 50 loop

if (my_sum = 20) then
next;

end if;
my_sum := my_sum + 1;

end loop;

variable my_sum : integer := 0;
--
while (my_sum < 300) loop

next when (my_sum = 20);
my_sum := my_sum + 1;

end loop;
--
--

exit Statement

The exit statement allows for the immediate termination of the loop and

can be used in both for loops and while loops. Once the exit statement

is encountered in the flow of the code, control is returned to the statement

following the end loop statement associated with the given loop. The

exit statement works in nested loops as well. The two forms of the exit

statement are similar to the two forms of the next statement. Examples

of these forms are provided in the next listing.

variable my_sum : integer := 0;
--
for cnt_val in 0 to 50 loop

if (my_sum = 20) then
exit;

end if;
my_sum := my_sum + 1;

end loop;

variable my_sum : integer := 0;
--
while (my_sum < 300) loop

exit when (my_sum = 20);
my_sum := my_sum + 1;

end loop;
--
--

12
Standard Digital Circuits in VHDL

As you know or as you will be finding out soon, even the most complex di-

gital circuit is composed of a relatively small set of standard digital circuits

plus some associated control signals. This list of standard digital circuits is

a mixed bag of combinatorial sequential devices such as MUXes, decoders,

counters, comparators, registers, etc. The art of digital design using VHDL

is centered around the proper selection and interfacing of these devices.

The actual creation and testing of these devices is de-emphasized.

The most efficient approach to utilizing standard digital circuits using

VHDL is to use existing code for these devices and modify them according

to the needs of your particular design. This approach allows you to utilize

your current knowledge of VHDL to quickly and efficiently design complex

digital circuits. The following listings show a set of standard digital devices

and the VHDL code used to describe them. The following circuits are

represented in various sizes and widths. Note that the following circuit

descriptions represent possible VHDL descriptions but are by no means

the only descriptions. They do however provide starting points for you to

modify for your own design needs.

162 Chapter 12: Standard Digital Circuits in VHDL

12.1 RET D Flip-flop - Behavioral Model

-- D flip-flop: RET D flip-flop with single output
--
-- Required signals:

-- CLK,D: in std_logic;
-- Q: out std_logic;

process (CLK)
begin

if (rising_edge(CLK)) then
Q <= D;

end if;
end process;
--

12.2 FET D Flip-flop with Active-low Asynchronous Preset - Be-

havioral Model

-- D flip-flop: FET D flip-flop with asynchronous preset. The
-- preset input takes precedence over the synchronous input.
--
-- Required signals:

-- CLK,D,S: in std_logic;
-- Q: out std_logic;

process (CLK,S)
begin

if (S = '0') then
Q <= '1';

elsif (falling_edge(CLK)) then
Q <= D;

end if;
end process;
--

12.3 8-Bit Register with Load Enable - Behavioral Model 163

12.3 8-Bit Register with Load Enable - Behavioral Model

-- Register: 8-bit Register with load enable.
--
-- Required signals:

-- CLK,LD: in std_logic;
-- D_IN: in std_logic_vector(7 downto 0);
-- D_OUT: out std_logic_vector(7 downto 0);

process (CLK)
begin

if (rising_edge(CLK)) then
if (LD = '1') then -- positive logic for LD

D_OUT <= D_IN;
end if;

end if;
end process;
--

12.4 Synchronous Up/Down Counter - Behavioral Model

1

2 --
3 -- Counter: synchronous up/down counter with asynchronous
4 -- reset and synchronous parallel load.
5 --
6 -- library declaration
7 library IEEE;
8 use IEEE.std_logic_1164.all;
9 use IEEE.numeric_std.all;

10

11 entity COUNT_8B is
12 port (RESET,CLK,LD,UP : in std_logic;
13 DIN : in std_logic_vector (7 downto 0);
14 COUNT : out std_logic_vector (7 downto 0));
15 end COUNT_8B;
16 architecture my_count of COUNT_8B is
17 signal t_cnt : unsigned(7 downto 0); -- internal counter signal
18 begin
19 process (CLK, RESET)
20 begin
21 if (RESET = '1') then
22 t_cnt <= (others => '0'); -- clear
23 elsif (rising_edge(CLK)) then
24 if (LD = '1') then t_cnt <= unsigned(DIN); -- load
25 else
26 if (UP = '1') then t_cnt <= t_cnt + 1; -- incr
27 else t_cnt <= t_cnt - 1; -- decr
28 end if;
29 end if;
30 end if;
31 end process;
32 COUNT <= std_logic_vector(t_cnt);
33 end my_count;
34 --

Refer to Appendix C for a comprehensive list of type conversion func-

164 Chapter 12: Standard Digital Circuits in VHDL

tions like the ones in line 24 and line 32 of the code above.

12.5 Shift Register with Synchronous Parallel Load - Behavioral

Model

--
-- Shift Register: unidirectional shift register with synchronous
-- parallel load.
--
-- Required signals:
--
-- CLK, D_IN: in std_logic;
-- P_LOAD: in std_logic;
-- P_LOAD_DATA: in std_logic_vector(7 downto 0);
-- D_OUT: out std_logic;
--
-- Required intermediate signals:
signal REG_TMP: std_logic_vector(7 downto 0);
--
process (CLK)
begin

if (rising_edge(CLK)) then
if (P_LOAD = '1') then

REG_TMP <= P_LOAD_DATA;
else

REG_TMP <= REG_TMP(6 downto 0) & D_IN;
end if;

end if;
D_OUT <= REG_TMP(7);

end process;
--

12.6 8-Bit Comparator - Behavioral Model 165

12.6 8-Bit Comparator - Behavioral Model

--
-- Comparator: Implemented as a behavioral model. The outputs
-- include equals, less than and greater than status.
--
-- Required signals:
--
-- CLK: in std_logic;
-- A_IN, B_IN: in std_logic_vector(7 downto 0);
-- ALB, AGB, AEB: out std_logic
--
process(CLK)
begin

if (A_IN < B_IN) then ALB <= '1';
else ALB <= '0';
end if;

if (A_IN > B_IN) then AGB <= '1';
else AGB <= '0';
end if;

if (A_IN = B_IN) then AEB <= '1';
else AEB <= '0';
end if;

end process;
--

12.7 BCD to 7-Segment Decoder - Data-Flow Model

--
-- BCD to 7-Segment Decoder: Implemented as combinatorial circuit.
-- Outputs are active low; Hex outputs are included. The SSEG format
-- is ABCDEFG (segA, segB etc.)
--
-- Required signals:
--
-- BCD_IN: in std_logic_vector(3 downto 0);
-- SSEG: out std_logic_vector(6 downto 0);
--
with BCD_IN select

SSEG <= "0000001" when "0000", -- 0
"1001111" when "0001", -- 1
"0010010" when "0010", -- 2
"0000110" when "0011", -- 3
"1001100" when "0100", -- 4
"0100100" when "0101", -- 5
"0100000" when "0110", -- 6
"0001111" when "0111", -- 7
"0000000" when "1000", -- 8
"0000100" when "1001", -- 9
"0001000" when "1010", -- A
"1100000" when "1011", -- b
"0110001" when "1100", -- C
"1000010" when "1101", -- d
"0110000" when "1110", -- E
"0111000" when "1111", -- F
"1111111" when others; -- turn off all LEDs

--

166 Chapter 12: Standard Digital Circuits in VHDL

12.8 4:1 Multiplexer - Behavioral Model

--
-- A 4:1 multiplexer implemented as behavioral model using case
-- statement.
--
-- Required signals:
--
-- SEL: in std_logic_vector(1 downto 0);
-- A, B, C, D: in std_logic;
-- MUX_OUT: out std_logic;
--
process (SEL, A, B, C, D)
begin

case SEL is
when "00" => MUX_OUT <= A;
when "01" => MUX_OUT <= B;
when "10" => MUX_OUT <= C;
when "11" => MUX_OUT <= D;
when others => (others => '0');

end case;
end process;
--

12.9 4:1 Multiplexer - Data-Flow Model

--
-- A 4:1 multiplexer implemented as data-flow model using a
-- selective signal assignment statement.
--
-- Required signals:
--
-- SEL: in std_logic_vector(1 downto 0);
-- A, B, C, D: in std_logic;
-- MUX_OUT: out std_logic;
--
with SEL select

MUX_OUT <= A when "00",
B when "01",
C when "10",
D when "11",
(others => '0') when others;

--

12.10 Decoder 167

12.10 Decoder

-- Decoder: 3:8 decoder with active high outputs implemented as
-- combinatorial circuit with selective signal assignment statement
--
-- Required signals:

-- D_IN: in std_logic_vector(2 downto 0);
-- FOUT: out std_logic_vector(7 downto 0);

with D_IN select

F_OUT <= "00000001" when "000",
"00000010" when "001",
"00000100" when "010",
"00001000" when "011",
"00010000" when "100",
"00100000" when "101",
"01000000" when "110",
"10000000" when "111",
"00000000" when others;

--

A
VHDL Reserved Words

Table A.1 provides a complete list of VHDL reserved words.

abs downto library postponed srl

access else linkage procedure subtype

after elsif literal process then

alias end loop pure to

all entity map range transport

and exit mod record type

architecture file nand register unaffected

array for new reject units

assert function next rem until

attribute generate nor report use

begin generic not return variable

block group null rol wait

body guarded of ror when

buffer if on select while

bus impure open severity with

case in or signal xnor

component inertial others shared xor

configuration inout out sla

constant is package sll

disconnect label port sra

Table A.1: A complete list of VHDL reserved words.

B
Standard VHDL Packages

After years of development by the US Department of Defense, in February

1986 all VHDL rights were transferred to the Institute of Electrical and

Electronics Engineers (IEEE) which since then has carried on the process

of standardization of the language.

After three main language standardization steps that took place in 1987,

1993 and in 2002, VHDL now includes a large set of packages that, once

included in your code, give you the possibility of using several mathemat-

ical constants, numerical functions, overloaded operators, type conversion

functions, enhanced signal types and much more.

The main VHDL language library packages that you will probably need

to use in your career as an engineer can be included in your code via the

following statements:

library IEEE;

-- essential IEEE libraries

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

-- more IEEE libraries

use IEEE.numeric_signed.all;

use IEEE.numberic_unsigned.all;

use IEEE.numeric_bit.all;

use IEEE.math_real.all;

use IEEE.math_complex.all;

For instance, the inclusion of the package std logic 1164 in your

172 Chapter B: Standard VHDL Packages

code, will give you the ability to use the several data types like the

std logic or the std logic vector. The following listing shows a

simple coding example of some of the many advantages of using these

libraries.

Listing B.1: Example of operators and types available with some IEEE packages.

-- typical packages declaration
library IEEE;
use ieee.std_logic_1164.all ;
use ieee.numeric_std.all ;

-- entity
entity my_blk is

port (IN1, IN2 : in std_logic;
CLK, CLR : in std_logic;
OUT1 : out std_logic);

end my_blk;

-- architecture
architecture arch of my_blk is
signal A,B: unsigned(7 downto 0);--note how for internal signals the
signal Y1 : unsigned(7 downto 0);--unsigned and integer types replaced
signal Y2 : unsigned(8 downto 0);--the simpler std_logic_vector
signal X : integer range 0 to 255;

begin
sync_proc: process(CLK,CLR)
begin
if CLR = '1' then

OUT1 <= '0';
elsif rising_edge(CLK) then --std_logic_1164 gives rising_edge()

Y1 <= A + B + unsigned("0" & IN1);--numeric_std defines addition
--for unsigned types.

Y2<= resize(A, Y2'length) + B + ("0" & IN1);

X <= to_integer(A); --numeric_std gives to_integer()

OUT1 <= IN1 AND IN2;
end if;

end process sync_proc;
end arch;

As it becomes clear from the previous listing, the inclusion of the main

standard libraries allows you to write very powerful VHDL code. A quite

useful cheat-sheet about VHDL standard libraries and what they can offer

is available from here:

http://www.vhdl.org/rassp/vhdl/guidelines/vhdlqrc.pdf

http://www.vhdl.org/rassp/vhdl/guidelines/1164qrc.pdf

The IEEE standardized libraries heavily enhance the VHDL language

capability giving you a long list of functions that you can freely use in

your VHDL source code. A list of these libraries cannot be included here

B.1 IEEE Standard Libraries 173

for copyright reasons but all IEEE libraries source code is freely available

to you from the following link:

http://standards.ieee.org/downloads/1076/1076.2-1996/

Alternatively, the same VHDL libraries can be browsed and downloaded

from the GHDL website:

http://ghdl.free.fr

Finally, the software development tool (e.g. Xilinx ISE) that you use for

the synthesis of your VHDL code will include these libraries. A quick look

at the source code will give you a pretty good idea of what is available to

you and how to use it. For instance, a quick look at the math real.vhdl

library, available from:

http://standards.ieee.org

will show you that the constant of type real MATH PI = 3.1415926 is

available to you as soon as you include the "use IEEE.math real.all;"

line. The square root function SQRT() is just another example.

B.1 IEEE Standard Libraries

In VHDL, basic arithmetics is defined for the integer data type and for

the natural data type. In order to have more control during synthesis

over the various data formats, other libraries were developed and included

into the IEEE standard.

The library numeric std extended the standard VHDL by adding the

signed and the unsigned data types as well as the arithmetics for them.

These libraries are IEEE standard packages and their behaviour is gov-

erned by the standard, therefore assuring compatibility. In this book, we

highly recommend the use of the numeric std library over the Synopsys

std logic arith library.

As a natural consequence, we recommend using the types unsigned,

signed and integer instead of the simpler std logic vector type

for the many needs you might have. Refer to listing B.1 for en example of

the wise use of the type unsigned or the type integer over the type

std logic vector.

http://standards.ieee.org/downloads/1076/1076.2-1996/
http://ghdl.free.fr
http://standards.ieee.org

174 Chapter B: Standard VHDL Packages

B.2 Non-standard Libraries

If you often use google for learning purposes, you will soon discover that

the use of the non-standard library:

library ieee;

ieee.std logic arith.all;

is amazingly common among VHDL programmers.

The std logic arith library, as well as the std logic unsigned

and the std logic signed libraries, were written and packaged by

Synopsys to provide extended VHDL programming functionalities. Using

these libraries eliminates the need for data conversion and, for instance,

it allows you to write:

a logic vector <= a logic vector + 1;

Despite the great advantage that these non-standard libraries seem to give

you, their use is not considered a good practice. Because of compatibility

issues during synthesis, we strongly discourage the use of these libraries.

C
VHDL Reference Cards

Hereafter you can find two sets of very useful VHDL reference cards made

by Qualis Design Corporation.

http://www.vhdl.org/rassp/vhdl/guidelines/vhdlqrc.pdf

http://www.vhdl.org/rassp/vhdl/guidelines/1164qrc.pdf

V
H

D
L

 Q
U

IC
K

R
E

F
E

R
E

N
C

E
 C

A
R

D
R

E
V

IS
IO

N
 1

.1

()
G

ro
u
p
in

g
[
]

O
p
tio

n
a
l

{}
R

e
p
e
a
te

d
|

A
lte

rn
a
tiv

e
b

o
ld

A
s
 i
s

C
A

P
S

U
se

r
Id

e
n
tif

ie
r

ita
lic

V
H

D
L
-1

9
9
3

1
.

L
IB

R
A

R
Y

 U
N

IT
S

[{
u
se

_
cl

a
u
se

}]
e
n

ti
ty

 I
D

 i
s

[g
e
n

e
ri

c
 (

{I
D

 :
 T

Y
P

E
ID

 [
:=

 e
xp

r]
;}

);
]

[p
o

rt
 (

{I
D

 :
 i
n

 |
 o

u
t

|
in

o
u

t
T

Y
P

E
ID

 [
:=

 e
xp

r]
;}

);
]

[{
d
e
cl

a
ra

tio
n
}]

[b
e
g

in
{p

a
ra

lle
l_

st
a
te

m
e
n
t}

]
e
n

d
 [
e
n

ti
ty

]
E

N
T

IT
Y

ID
;

[{
u
se

_
cl

a
u
se

}]
a
rc

h
it

e
c
tu

re
 I
D

 o
f

E
N

T
IT

Y
ID

 i
s

[{
d
e
cl

a
ra

tio
n
}]

b
e
g

in
[{

p
a
ra

lle
l_

st
a
te

m
e
n
t}

]
e
n

d
 [
a
rc

h
it

e
c
tu

re
]

A
R

C
H

ID
;

[{
u
se

_
cl

a
u
se

}]
p

a
c
k
a
g

e
 I
D

 i
s

[{
d
e
cl

a
ra

tio
n
}]

e
n

d
 [
p

a
c
k
a
g

e
]
P

A
C

K
ID

;

[{
u
se

_
cl

a
u
se

}]
p

a
c
k
a
g

e
 b

o
d

y
 I
D

 i
s

[{
d
e
cl

a
ra

tio
n
}]

e
n

d
 [
p

a
c
k
a
g

e
 b

o
d

y
]
P

A
C

K
ID

;

[{
u
se

_
cl

a
u
se

}]
c
o

n
fi

g
u

ra
ti

o
n

 I
D

 o
f

E
N

T
IT

Y
ID

 i
s

fo
r

A
R

C
H

ID
[{

b
lo

ck
_
co

n
fig

 |
 c

o
m

p
_
co

n
fig

}]
e
n

d
 f

o
r;

e
n

d
 [
c
o

n
fi

g
u

ra
ti

o
n

]
C

O
N

F
ID

;

u
se

_
cl

a
u
se

::
=

li
b

ra
ry

 I
D

;
[{

u
s
e
 L

IB
ID

.P
K

G
ID

.a
ll
;}

]

b
lo

ck
_
co

n
fig

::
=

fo
r

L
A

B
E

L
ID

[{
b
lo

ck
_
co

n
fig

 |
 c

o
m

p
_
co

n
fig

}]
e
n

d
 f

o
r;

co
m

p
_
co

n
fig

::
=

fo
r

a
ll
 |
 L

A
B

E
L
ID

 :
 C

O
M

P
ID

(u
s
e
 e

n
ti

ty
 [
L
IB

ID
.]
E

N
T

IT
Y

ID
 [

(
A

R
C

H
ID

)
]

[[
g

e
n

e
ri

c
 m

a
p

 (
 {

G
E

N
ID

 =
>

 e
xp

r
,}

)
]

 p
o

rt
 m

a
p

 (
{P

O
R

T
ID

 =
>

 S
IG

ID
 |
 e

xp
r

,}
)]

;
[f

o
r

A
R

C
H

ID
[{

b
lo

ck
_
co

n
fig

 |
 c

o
m

p
_
co

n
fig

}]
e
n

d
 f

o
r;

]
e
n

d
 f

o
r;

)
|

(u
s
e
 c

o
n

fi
g

u
ra

ti
o

n
 [
L
IB

ID
.]
C

O
N

F
ID

[[
g

e
n

e
ri

c
 m

a
p

 (
{G

E
N

ID
 =

>
 e

xp
r

,}
)]

p
o

rt
 m

a
p

 (
{P

O
R

T
ID

 =
>

 S
IG

ID
 |
 e

xp
r,

})
];

)
e
n

d
 f

o
r;

2
.

D
E

C
L

A
R

A
T

IO
N

S

2
.1

.
T

Y
P

E
 D

E
C

L
A

R
A

T
IO

N
S

ty
p

e
 I
D

 i
s
 (

 {
ID

,}
)

;

ty
p

e
 I
D

 i
s
 r

a
n

g
e

 n
u
m

b
e
r

d
o

w
n

to
 |
 t

o
 n

u
m

b
e
r;

ty
p

e
 I
D

 i
s
 a

rr
a
y
 (

 {
ra

n
g
e
 |
 T

Y
P

E
ID

 ,
})

o
f

T
Y

P
E

ID
 |
 S

U
B

T
Y

P
ID

;

ty
p

e
 I
D

 i
s
 r

e
c
o

rd
{I

D
 :

 T
Y

P
E

ID
;}

e
n

d
 r

e
c
o

rd
;

ty
p

e
 I
D

 i
s
 a

c
c
e
s
s
 T

Y
P

E
ID

;

ty
p

e
 I
D

 i
s
 f

il
e
 o

f
T

Y
P

E
ID

;

s
u

b
ty

p
e
 I
D

 i
s
 S

C
A

L
A

R
T

Y
P

ID
 r

a
n

g
e
 r

a
n
g
e
;

s
u

b
ty

p
e
 I
D

 i
s
 A

R
R

A
Y

T
Y

P
ID

(
{r

a
n
g
e
,}

)

s
u

b
ty

p
e
 I
D

 i
s
 R

E
S

O
L

V
F

C
T

ID
 T

Y
P

E
ID

;

ra
n
g
e
 :
:=

(i
n
te

g
e
r

|
E

N
U

M
ID

 t
o

 |
 d

o
w

n
to

 in
te

g
e
r

|
E

N
U

M
ID

)
|
(O

B
JI

D
’[r

e
v
e
rs

e
_
]r

a
n

g
e
)

|
(T

Y
P

E
ID

 r
a
n

g
e
 <

>
)

2
.2

.
O

T
H

E
R

 D
E

C
L

A
R

A
T

IO
N

S

c
o

n
s
ta

n
t

ID
 :

 T
Y

P
E

ID
 :

=
 e

xp
r;

[s
h

a
re

d
]
v
a
ri

a
b

le
 I
D

 :
 T

Y
P

E
ID

 [
:=

 e
xp

r]
;

s
ig

n
a
l
ID

 :
 T

Y
P

E
ID

 [
:=

 e
xp

r]
;

fi
le

 I
D

 :
 T

Y
P

E
ID

 (
is

 i
n

 |
 o

u
t

st
ri
n
g
;)

 |
(o

p
e
n

 r
e
a
d

_
m

o
d

e
 |
 w

ri
te

_
m

o
d

e
 |
 a

p
p

e
n

d
_
m

o
d

e
 i
s
 s

tr
in

g
;)

a
li
a
s
 I
D

 :
 T

Y
P

E
ID

 i
s
 O

B
J
ID

;

a
tt

ri
b

u
te

 I
D

 :
 T

Y
P

E
ID

;

a
tt

ri
b

u
te

 A
T

T
R

ID
 o

f
O

B
J
ID

 |
 o

th
e
rs

 |
 a

ll
 :

 c
la

ss
is

 e
xp

r;

cl
a
ss

 :
:=

e
n

ti
ty

 |
 a

rc
h

it
e
c
tu

re
 |
 c

o
n

fi
g

u
ra

ti
o

n
 |

p
ro

c
e
d

u
re

 |
 f

u
n

c
ti

o
n

 |
 p

a
c
k
a
g

e
 |
 t

y
p

e
 |

s
u

b
ty

p
e
 |
 c

o
n

s
ta

n
t

|
s
ig

n
a
l
|
v
a
ri

a
b

le
 |

c
o

m
p

o
n

e
n

t
|
la

b
e
l

c
o

m
p

o
n

e
n

t
ID

 [
is

]
[g

e
n

e
ri

c
 (

 {
ID

 :
 T

Y
P

E
ID

 [
:=

 e
xp

r]
;}

)
;]

[p
o

rt
 (

{I
D

 :
 i
n

 |
 o

u
t

|
in

o
u

t
T

Y
P

E
ID

 [
:=

 e
xp

r]
;}

);
e
n

d
 c

o
m

p
o

n
e
n

t
[C

O
M

P
ID

];

[i
m

p
u

re
]
fu

n
c
ti

o
n

 I
D

[(
 {

[c
o

n
s
ta

n
t

|
v
a
ri

a
b

le
 |
 s

ig
n

a
l]
 I
D

 :

 i
n

 |
 o

u
t

|
in

o
u

t
T

Y
P

E
ID

 [
:=

 e
xp

r]
;}

)]
re

tu
rn

 T
Y

P
E

ID
 [
is

b
e
g

in
{s

e
q
u
e
n
tia

l_
st

a
te

m
e
n
t}

e
n

d
 [
fu

n
c
ti

o
n

]
ID

];

p
ro

c
e
d

u
re

 I
D

[(
{[

c
o

n
s
ta

n
t

|
v
a
ri

a
b

le
 |
 s

ig
n

a
l]
 I
D

 :
in

 |
 o

u
t

|
in

o
u

t
T

Y
P

E
ID

 [
:=

 e
xp

r]
;}

)]
[i
s
 b

e
g

in
[{

se
q
u
e
n
tia

l_
st

a
te

m
e
n
t}

]
e
n

d
 [
p

ro
c
e
d

u
re

]
ID

];

fo
r

L
A

B
E

L
ID

 |
 o

th
e
rs

 |
 a

ll
 :

 C
O

M
P

ID
 u

s
e

(e
n

ti
ty

 [
L
IB

ID
.]
E

N
T

IT
Y

ID
 [
(

A
R

C
H

ID
)

])
 |

(c
o

n
fi

g
u

ra
ti

o
n

 [
L
IB

ID
.]
C

O
N

F
ID

)
[[
g

e
n

e
ri

c
 m

a
p

 (
 {

G
E

N
ID

 =
>

 e
xp

r,
}

)]
 p

o
rt

 m
a
p

 (
 {

P
O

R
T

ID
 =

>
 S

IG
ID

 |
 e

xp
r,

}
)]

;

3
.

E
X

P
R

E
S

S
IO

N
S

e
xp

re
ss

io
n
 :
:=

(r
e
la

tio
n
 a

n
d

 r
e
la

tio
n
)

|
(r

e
la

tio
n
 o

r
re

la
tio

n
)

|
(r

e
la

tio
n
 x

o
r

re
la

tio
n
)

re
la

tio
n
 :
:=

sh
e
xp

r
[r

e
lo

p
 s

h
e
xp

r]

sh
e
xp

r
::
=

se
xp

r
[s

h
o
p
 s

e
xp

r]

se
xp

r
::
=

[+
|-

]
te

rm
 {

a
d
d
o
p
 t
e
rm

}

te
rm

 :
:=

fa
ct

o
r

{m
u
lo

p
 f
a
ct

o
r}

fa
ct

o
r

::
=

(p
ri
m

 [
**

 p
ri
m

])
 |
 (

a
b

s
 p

ri
m

)
|
(n

o
t

p
ri
m

)

p
ri
m

 :
:=

lit
e
ra

l |
 O

B
JI

D
 |
 O

B
JI

D
’A

T
T

R
ID

 |

O
B

J
ID

({
e
xp

r,
})

|
O

B
J
ID

(r
a
n
g
e
)

|
({

[c
h
o
ic

e
 [
{|

 c
h
o
ic

e
}]

 =
>

]
e
xp

r,
})

|
F

C
T

ID
({

[P
A

R
ID

 =
>

]
e
xp

r,
})

 |
 T

Y
P

E
ID

’(
e
xp

r)
 |

T
Y

P
E

ID
(e

xp
r)

 |
 n

e
w

 T
Y

P
E

ID
[‘
(e

xp
r)

]
|
(

e
xp

r
)

ch
o
ic

e
 :
:=

se
xp

r
|
ra

n
g
e
 |
 R

E
C

F
ID

 |
 o

th
e
rs

3
.1

.
O

P
E

R
A

T
O

R
S
,

IN
C

R
E

A
S

IN
G

 P
R

E
C

E
D

E
N

C
E

lo
g
o
p

a
n

d
 |
 o

r
|
x
o

r
re

lo
p

=
 |
 /
=

 |
 <

 |
 <

=
 |
 >

 |
 =

>
sh

o
p

s
ll
 |
 s

rl
 |
 s

la
 |
 s

ra
 |
 r

o
l

|
ro

r
a
d
d
o
p

+
 |
 -

 |
 &

m
u
lo

p
*

|
/
|
m

o
d

 |
 r

e
m

m
is

co
p

**
 |
 a

b
s
 |
 n

o
t

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n
.
 P

e
rm

is
si

o
n
 t
o

re
p
ro

d
u
ce

 a
n
d
 d

is
tr

ib
u
te

 s
tr

ic
tly

 v
e
rb

a
tim

 c
o
p
ie

s
o
f
th

is
d
o
cu

m
e
n
t
in

 w
h
o
le

 is
 h

e
re

b
y

g
ra

n
te

d
.

S
e
e
 r

e
ve

rs
e
 s

id
e
 f
o
r

a
d
d
iti

o
n
a
l i

n
fo

rm
a
tio

n
.

4
.

S
E

Q
U

E
N

T
IA

L
 S

T
A

T
E

M
E

N
T

S

w
a
it

 [
o

n
 {

S
IG

ID
,}

]
[u

n
ti

l
e
xp

r]
 [
fo

r
tim

e
];

a
s
s
e
rt

 e
xp

r
[r

e
p

o
rt

 s
tr

in
g
]
[s

e
v

e
ri

ty
 n

o
te

 |
 w

a
rn

in
g

 |

e
rr

o
r

|
fa

il
u

re
];

re
p

o
rt

 s
tr

in
g

[s
e
v
e
ri

ty
 n

o
te

 |
 w

a
rn

in
g

 |
 e

rr
o

r
|

 f
a
il
u

re
];

S
IG

ID
 <

=
 [
tr

a
n

s
p

o
rt

]
|
[r

e
je

c
t

T
IM

E
 i
n

e
rt

ia
l]

{e

xp
r

[a
ft

e
r

tim
e
]}

;

V
A

R
ID

 :
=

 e
xp

r;

P
R

O
C

E
D

U
R

E
ID

[(
{[

P
A

R
ID

 =
>

]
e
xp

r,
})

];

[L
A

B
E

L
:]
 i
f

e
xp

r
th

e
n

{s
e
q
u
e
n
tia

l_
st

a
te

m
e
n
t}

[{
e
ls

if
 e

xp
r

th
e
n

{s
e
q
u
e
n
tia

l_
st

a
te

m
e
n
t}

}]
[e

ls
e

{s
e
q
u
e
n
tia

l_
st

a
te

m
e
n
t}

]
e
n

d
 i
f

[L
A

B
E

L
];

[L
A

B
E

L
:]

 c
a
s
e

 e
xp

r
is

{w
h

e
n

 c
h
o
ic

e
 [
{|

 c
h
o
ic

e
}]

 =
>

{s
e
q
u
e
n
tia

l_
st

a
te

m
e
n
t}

}
e
n

d
 c

a
s
e
 [
L
A

B
E

L
];

[L
A

B
E

L
:]

 [
w

h
il
e
 e

xp
r]

 l
o

o
p

{s
e
q
u
e
n
tia

l_
st

a
te

m
e
n
t}

e
n

d
 l
o

o
p

 [
L
A

B
E

L
];

 [
L
A

B
E

L
:]

 f
o

r
ID

 i
n

 r
a
n
g
e
 l
o

o
p

{s
e
q
u
e
n
tia

l_
st

a
te

m
e
n
t}

e
n

d
 l
o

o
p

 [
L
A

B
E

L
];

n
e
x
t

[L
O

O
P

L
B

L
]
[w

h
e
n

 e
xp

r]
;

e
x
it

 [
L
O

O
P

L
B

L
]
[w

h
e
n

 e
xp

r]
;

re
tu

rn
 [
e
xp

re
ss

io
n
];

n
u

ll
;

5
.

P
A

R
A

L
L

E
L

 S
T

A
T

E
M

E
N

T
S

[L
A

B
E

L
:]

 b
lo

c
k
 [
is

]
[g

e
n

e
ri

c
 (

 {
ID

 :
 T

Y
P

E
ID

;}
)

;
[g

e
n

e
ri

c
 m

a
p

 (
 {

G
E

N
ID

 =
>

 e
xp

r,
}

);
]]

[p
o

rt
 (

 {
ID

 :
 i
n

 |
 o

u
t

|
in

o
u

t
T

Y
P

E
ID

 }
)

;
[p

o
rt

 m
a
p

 (
 {

P
O

R
T

ID
 =

>
 S

IG
ID

 |
 e

xp
r,

}
)]

;]
[{

d
e
cl

a
ra

tio
n
}]

b
e
g

in
[{

p
a
ra

lle
l_

st
a
te

m
e
n
t}

]
e
n

d
 b

lo
c
k
 [
L
A

B
E

L
];

[L
A

B
E

L
:]

 [
p

o
s
tp

o
n

e
d

]
p

ro
c
e
s
s
 [
(

{S
IG

ID
,}

)
]

[{
d
e
cl

a
ra

tio
n
}]

b
e
g

in
[{

se
q
u
e
n
tia

l_
st

a
te

m
e
n
t}

]
e
n

d
 [
p

o
s
tp

o
n

e
d

]
p

ro
c
e
s
s
 [
L
A

B
E

L
];

[L
B

L
:]

 [
p

o
s
tp

o
n

e
d

]
P

R
O

C
ID

({
[P

A
R

ID
 =

>
]
e
xp

r,
})

;

[L
A

B
E

L
:]

 [
p

o
s
tp

o
n

e
d

]
a
s
s
e
rt

 e
xp

r
[r

e
p

o
rt

 s
tr

in
g
]
[s

e
v

e
ri

ty
 n

o
te

 |
 w

a
rn

in
g

 |

e
rr

o
r

|
fa

il
u

re
];

[L
A

B
E

L
:]

 [
p

o
s
tp

o
n

e
d

]
S

IG
ID

 <
=

[t
ra

n
s
p

o
rt

]
|
[r

e
je

c
t

T
IM

E
 i
n

e
rt

ia
l]

[{
{e

xp
r

[a
ft

e
r

tim
e
]}

 |
 u

n
a
ff

e
c
te

d
 w

h
e
n

 e
xp

r
 e

ls
e
}]

 {
e
xp

r
[a

ft
e
r

tim
e
]}

 |
 u

n
a
ff

e
c
te

d
;

[L
A

B
E

L
:]

 [
p

o
s
tp

o
n

e
d

]
w

it
h

 e
xp

r
s
e
le

c
t

S
IG

ID
 <

=
 [
tr

a
n

s
p

o
rt

]
|
[r

e
je

c
t

T
IM

E
 i
n

e
rt

ia
l]

{{

e
xp

r
[a

ft
e
r

tim
e
]}

 |

u

n
a
ff

e
c
te

d
 w

h
e
n

 c
h
o
ic

e
 [
{|

 c
h
o
ic

e
}]

};

L
A

B
E

L
:

C
O

M
P

ID
[[
g

e
n

e
ri

c
 m

a
p

 (
 {

G
E

N
ID

 =
>

 e
xp

r,
}

)]
 p

o
rt

 m
a
p

 (
 {

P
O

R
T

ID
 =

>
 S

IG
ID

,}
)

];

L
A

B
E

L
:

e
n

ti
ty

 [
L
IB

ID
.]
E

N
T

IT
Y

ID
 [
(A

R
C

H
ID

)]
[[
g

e
n

e
ri

c
 m

a
p

 (
 {

G
E

N
ID

 =
>

 e
xp

r,
}

)]
 p

o
rt

 m
a
p

 (
 {

P
O

R
T

ID
 =

>
 S

IG
ID

,}
)

];

L
A

B
E

L
:

c
o

n
fi

g
u

ra
ti

o
n

 [
L
IB

ID
.]
C

O
N

F
ID

[[
g

e
n

e
ri

c
 m

a
p

 (
 {

G
E

N
ID

 =
>

 e
xp

r,
}

)]
 p

o
rt

 m
a
p

 (
 {

P
O

R
T

ID
 =

>
 S

IG
ID

,}
)

];

L
A

B
E

L
:

if
 e

xp
r

g
e
n

e
ra

te
[{

p
a
ra

lle
l_

st
a
te

m
e
n
t}

]
e
n

d
 g

e
n

e
ra

te
 [
L
A

B
E

L
];

L
A

B
E

L
:

fo
r

ID
 i
n

 r
a
n
g
e
 g

e
n

e
ra

te
[{

p
a
ra

lle
l_

st
a
te

m
e
n
t}

]
e
n

d
 g

e
n

e
ra

te
 [
L
A

B
E

L
];

6
.

P
R

E
D

E
F

IN
E

D
 A

T
T

R
IB

U
T

E
S

T
Y

P
ID

’b
a
s
e

B
a
se

 t
yp

e
T

Y
P

ID
’l
e
ft

L
e
ft
 b

o
u
n
d
 v

a
lu

e
T

Y
P

ID
’r

ig
h

t
R

ig
h
t-

b
o
u
n
d
 v

a
lu

e
T

Y
P

ID
’h

ig
h

U
p
p
e
r-

b
o
u
n
d
 v

a
lu

e
T

Y
P

ID
’l
o

w
L
o
w

e
r-

b
o
u
n
d
 v

a
lu

e
T

Y
P

ID
’p

o
s
(e

xp
r)

P
o
si

tio
n
 w

ith
in

 t
yp

e
T

Y
P

ID
’v

a
l(

e
xp

r)
V

a
lu

e
 a

t
p
o
si

tio
n

T
Y

P
ID

’s
u

c
c
(e

xp
r)

N
e
xt

 v
a
lu

e
 in

 o
rd

e
r

T
Y

P
ID

’p
re

c
(e

xp
r)

P
re

vi
o
u
s

va
lu

e
 in

 o
rd

e
r

T
Y

P
ID

’l
e
ft

o
f(

e
xp

r)
V

a
lu

e
 t
o
 t
h
e
 le

ft
 in

 o
rd

e
r

T
Y

P
ID

’r
ig

h
to

f(
e
xp

r)
V

a
lu

e
 t
o
 t
h
e
 r

ig
h
t
in

 o
rd

e
r

T
Y

P
ID

’a
s
c
e
n

d
in

g
A

sc
e
n
d
in

g
 t
yp

e
 p

re
d
ic

a
te

T
Y

P
ID

’i
m

a
g

e
(e

xp
r)

S
tr

in
g
 im

a
g
e
 o

f
va

lu
e

T
Y

P
ID

’v
a
lu

e
(s

tr
in

g
)

V
a
lu

e
 o

f
st

ri
n
g
 im

a
g
e

A
R

Y
ID

’le
ft

[(
e
xp

r)
]

L
e
ft
-b

o
u
n
d
 o

f
[n

th
]
in

d
e
x

A
R

Y
ID

’r
ig

h
t[

(e
xp

r)
]

R
ig

h
t-

b
o
u
n
d
 o

f
[n

th
]
in

d
e
x

A
R

Y
ID

’h
ig

h
[(

e
xp

r)
]

U
p
p
e
r-

b
o
u
n
d
 o

f
[n

th
]
in

d
e
x

A
R

Y
ID

’l
o

w
[(

e
xp

r)
]

L
o
w

e
r-

b
o
u
n
d
 o

f
[n

th
]
in

d
e
x

A
R

Y
ID

’r
a
n

g
e
[(

e
xp

r)
]

‘le
ft
 d

o
w

n
/t
o
 ‘r

ig
h
t

A
R

Y
ID

’r
e
v
e
rs

e
_
ra

n
g

e
[(

e
xp

r)
]

‘r
ig

h
t
d
o
w

n
/t
o
 ‘l

e
ft

A
R

Y
ID

’l
e
n

g
th

[(
e
xp

r)
]

L
e
n
g
th

 o
f
[n

th
]
d
im

e
n
si

o
n

A
R

Y
ID

’a
s
c
e
n

d
in

g
[(

e
xp

r)
]

‘r
ig

h
t
>

=
 ‘l

e
ft
 ?

S
IG

ID
’d

e
la

y
e
d

[(
e
xp

r)
]

D
e
la

ye
d
 c

o
p
y

o
f
si

g
n
a
l

S
IG

ID
’s

ta
b

le
[(

e
xp

r)
]

S
ig

n
a
ls

 e
ve

n
t
o
n
 s

ig
n
a
l

S
IG

ID
’q

u
ie

t[
(e

xp
r)

]
S

ig
n
a
ls

 a
ct

iv
ity

 o
n
 s

ig
n
a
l

S
IG

ID
’t

ra
n

s
a
c
ti

o
n

[(
e
xp

r)
]

T
o
g
g
le

s
if

si
g
n
a
l a

ct
iv

e
S

IG
ID

’e
v
e
n

t
E

ve
n
t
o
n
 s

ig
n
a
l ?

S
IG

ID
’a

c
ti

v
e

A
ct

iv
ity

 o
n
 s

ig
n
a
l ?

S
IG

ID
’l
a
s
t_

e
v
e
n

t
T

im
e
 s

in
ce

 la
st

 e
ve

n
t

S
IG

ID
’l
a
s
t_

a
c
ti

v
e

T
im

e
 s

in
ce

 la
st

 a
ct

iv
e

S
IG

ID
’l
a
s
t_

v
a
lu

e
V

a
lu

e
 b

e
fo

re
 la

st
 e

ve
n
t

S
IG

ID
’d

ri
v
in

g
A

ct
iv

e
 d

ri
ve

r
p
re

d
ic

a
te

S
IG

ID
’d

ri
v
in

g
_
v
a
lu

e
V

a
lu

e
 o

f
d
ri
ve

r
O

B
JI

D
’s

im
p

le
_
n

a
m

e
N

a
m

e
 o

f
o
b
je

ct
O

B
JI

D
’i
n

s
ta

n
c
e
_
n

a
m

e
P

a
th

n
a
m

e
 o

f
o
b
je

ct
O

B
JI

D
’p

a
th

_
n

a
m

e
P

a
th

n
a
m

e
 t
o
 o

b
je

ct

7
.

P
R

E
D

E
F

IN
E

D
 T

Y
P

E
S

B
O

O
L

E
A

N
T

ru
e
 o

r
fa

ls
e

IN
T

E
G

E
R

3
2
 o

r
6
4
 b

its
N

A
T

U
R

A
L

In
te

g
e
rs

 >
=

 0
P

O
S

IT
IV

E
In

te
g
e
rs

 >
 0

R
E

A
L

F
lo

a
tin

g
-p

o
in

t
B

IT
‘0

’,
‘1

’
B

IT
_

V
E

C
T

O
R

(N
A

T
U

R
A

L
)

A
rr

a
y

o
f
b
its

C
H

A
R

A
C

T
E

R
7
-b

it
A

S
C

II
S

T
R

IN
G

(P
O

S
IT

IV
E

)
A

rr
a
y

o
f
ch

a
ra

ct
e
rs

T
IM

E
h
r,

 m
in

,
se

c,
 m

s,
u

s
,

n
s
,

p
s
,

fs
D

E
L
A

Y
_
L
E

N
G

T
H

T
im

e
 =

>
 0

8
.

P
R

E
D

E
F

IN
E

D
 F

U
N

C
T

IO
N

S

N
O

W
R

e
tu

rn
s

cu
rr

e
n
t
si

m
u
la

tio
n
 t
im

e
D

E
A

L
L

O
C

A
T

E
(A

C
C

E
S

S
T

Y
P

O
B

J
)

D
e
a
llo

ca
te

 d
yn

a
m

ic
 o

b
je

ct
F

IL
E

_
O

P
E

N
([

st
a
tu

s]
,
F

IL
E

ID
,
st

ri
n
g
,
m

o
d
e
)

O
p
e
n
 f
ile

F
IL

E
_
C

L
O

S
E

(F
IL

E
ID

)
C

lo
se

 f
ile

9
.

L
E

X
IC

A
L

 E
L

E
M

E
N

T
S

Id
e
n
tif

ie
r

::
=

 le
tt
e
r

{
[u

n
d
e
rl
in

e
]
a
lp

h
a
n
u
m

e
ri
c

}

d
e
ci

m
a
l l

ite
ra

l :
:=

in
te

g
e
r

[.
 in

te
g
e
r]

 [
E

[+
|-

]
in

te
g
e
r]

b
a
se

d
 li

te
ra

l :
:=

in
te

g
e
r

#
 h

e
xi

n
t
[.
 h

e
xi

n
t]
 #

 [
E

[+
|-

]
in

te
g
e
r]

b
it

st
ri
n
g
 li

te
ra

l :
:=

B
|O

|X
 “

 h
e
xi

n
t
“

co
m

m
e
n
t
::
=

--
 c

o
m

m
e
n
t
te

xt

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n
.
 P

e
rm

is
si

o
n
 t
o

re
p
ro

d
u
ce

 a
n
d
 d

is
tr

ib
u
te

 s
tr

ic
tly

 v
e
rb

a
tim

 c
o
p
ie

s
o
f
th

is
d
o
cu

m
e
n
t
in

 w
h
o
le

 is
 h

e
re

b
y

g
ra

n
te

d
.

Q
u

a
li
s
 D

e
s
ig

n
 C

o
rp

o
ra

ti
o

n
B

e
a
ve

rt
o
n
,
O

R
 U

S
A

P
h
o
n
e
:
+

1
-5

0
3
-5

3
1
-0

3
7
7

 F

A
X

:
+

1
-5

0
3
-6

2
9
-5

5
2
5

E
-m

a
il:

 in
fo

@
q
u
a
lis

.c
o
m

A
ls

o
 a

v
a
il
a
b

le
:

 1

1
6
4
 P

a
ck

a
g
e
s

Q
u
ic

k
R

e
fe

re
n
ce

 C
a
rd

V
e
ri
lo

g
 H

D
L
 Q

u
ic

k
R

e
fe

re
n
ce

 C
a
rd

11
6
4
 P

A
C

K
A

G
E

S
 Q

U
IC

K
R

E
F

E
R

E
N

C
E

 C
A

R
D

R
E

V
IS

IO
N

 1
.0

()
G

ro
u
p
in

g
[
]

O
p
tio

n
a
l

{}
R

e
p
e
a
te

d
|

A
lte

rn
a
tiv

e
b

o
ld

A
s
 i
s

C
A

P
S

U
se

r
Id

e
n
tif

ie
r

b
::
=

B
IT

u
/l

::
=

S
T

D
_

U
L

O
G

IC
/S

T
D

_
L

O
G

IC
bv

::
=

B
IT

_
V

E
C

T
O

R
uv

::
=

S
T

D
_

U
L

O
G

IC
_

V
E

C
T

O
R

lv
::
=

S
T

D
_

L
O

G
IC

_
V

E
C

T
O

R
u
n

::
=

U
N

S
IG

N
E

D
s
g

::
=

S
IG

N
E

D
n
a

::
=

N
A

T
U

R
A

L
in

::
=

IN
T

E
G

E
R

sm
::
=

S
M

A
L
L
_
IN

T
(s

u
b
ty

p
e
 I
N

T
E

G
E

R
 r

a
n
g
e
 0

 t
o
 1

)

c
::
=

co
m

m
u
ta

tiv
e

1
.

IE
E

E
’S

 S
T

D
_
L

O
G

IC
_
1
1
6
4

1
.1

.
L

O
G

IC
 V

A
L

U
E

S

‘U
’

U
n
in

iti
a
liz

e
d

‘X
’/
’W

’
S

tr
o
n
g
/W

e
a
k

u
n
kn

o
w

n
‘0

’/
’L

’
S

tr
o
n
g
/W

e
a
k

0
‘1

’/
’H

’
S

tr
o
n
g
/W

e
a
k

1
‘Z

’
H

ig
h
 I
m

p
e
d
a
n
ce

‘-
’

D
o
n
’t

ca
re

1
.2

.
P

R
E

D
E

F
IN

E
D

 T
Y

P
E

S

S
T

D
_
U

L
O

G
IC

B
a
se

 t
yp

e
S

u
b
ty

p
e
s:

S
T

D
_
L

O
G

IC
R

e
so

lv
e
d
 S

T
D

_
U

L
O

G
IC

X
0
1

R
e
so

lv
e
d
 X

,
0
 &

 1
X

0
1

Z
R

e
so

lv
e
d
 X

,
0
,
1
 &

 Z
U

X
0
1

R
e
so

lv
e
d
 U

,
X

,
0
 &

 1
U

X
0

1
Z

R
e
so

lv
e
d
 U

,
X

,
0
,
1
 &

 Z

S
T

D
_
U

L
O

G
IC

_
V

E
C

T
O

R
(n

a
 t

o
 |
 d

o
w

n
to

 n
a
)

A
rr

a
y

o
f
S

T
D

_
U

L
O

G
IC

S
T

D
_
L

O
G

IC
_
V

E
C

T
O

R
(n

a
 t

o
 |
 d

o
w

n
to

 n
a
)

A
rr

a
y

o
f
S

T
D

_
L
O

G
IC

1
.3

.
O

V
E

R
L

O
A

D
E

D
 O

P
E

R
A

T
O

R
S

D
e
sc

ri
p
tio

n
L
e
ft

O
p
e
ra

to
r

R
ig

h
t

b
itw

is
e
-a

n
d

u
/l,

u
v,

lv
a
n

d
u
/l,

u
v,

lv

b
itw

is
e
-o

r
u
/l,

u
v,

lv
o

r
u
/l,

u
v,

lv

b
itw

is
e
-x

o
r

u
/l,

u
v,

lv
x
o

r
u
/l,

u
v,

lv

b
itw

is
e
-n

o
t

n
o

t
u
/l,

u
v,

lv

1
.4

.
C

O
N

V
E

R
S

IO
N

 F
U

N
C

T
IO

N
S

F
ro

m
T

o
F

u
n
ct

io
n

u
/l

b
T

O
_
B

IT
(f

ro
m

,
[x

m
a
p
])

u
v,

lv
bv

T
O

_
B

IT
V

E
C

T
O

R
(f

ro
m

,
[x

m
a
p
])

b
u
/l

T
O

_
S

T
D

U
L

O
G

IC
(f

ro
m

)

b
v,

u
l

lv
T

O
_
S

T
D

L
O

G
IC

V
E

C
T

O
R

(f
ro

m
)

b
v,

lv
uv

T
O

_
S

T
D

U
L

O
G

IC
V

E
C

T
O

R
(f

ro
m

)

1
.5

.
P

R
E

D
IC

A
T

E
S

R
IS

IN
G

_
E

D
G

E
(S

IG
ID

)
R

is
e
 e

d
g
e
 o

n
 s

ig
n
a
l ?

F
A

L
L

IN
G

_
E

D
G

E
(S

IG
ID

)
F

a
ll

e
d
g
e
 o

n
 s

ig
n
a
l ?

IS
_
X

(O
B

J
ID

)
O

b
je

ct
 c

o
n
ta

in
s

‘X
’ ?

2
.

IE
E

E
’S

 N
U

M
E

R
IC

_
S

T
D

2
.1

.
P

R
E

D
E

F
IN

E
D

 T
Y

P
E

S

U
N

S
IG

N
E

D
(n

a
 t

o
 |
 d

o
w

n
to

 n
a
)

S
IG

N
E

D
(n

a
 t

o
 |
 d

o
w

n
to

 n
a
) A
rr

a
ys

 o
f
S

T
D

_
L
O

G
IC

2
.2

.
O

V
E

R
L

O
A

D
E

D
 O

P
E

R
A

T
O

R
S

L
e
ft

O
p

R

ig
h
t
 R

e
tu

rn
a
b

s
s
g

s
g

-
s
g

s
g

u
n

+
,-

,*
,/
,r

e
m

,m
o

d

u
n

u
n

s
g

+
,-

,*
,/
,r

e
m

,m
o

d

s
g

s
g

u
n

+
,-

,*
,/
,r

e
m

,m
o

d
 c

n
a

u
n

s
g

+
,-

,*
,/
,r

e
m

,m
o

d
 c

in
s
g

u
n

<
,>

,<
=

,>
=

,=
,/
=

u
n

b
o
o
l

s
g

<
,>

,<
=

,>
=

,=
,/
=

s
g

b
o
o
l

u
n

<
,>

,<
=

,>
=

,=
,/
=

 c
n
a

b
o
o
l

s
g

<
,>

,<
=

,>
=

,=
,/
=

 c
in

b
o
o
l

2
.3

.
P

R
E

D
E

F
IN

E
D

 F
U

N
C

T
IO

N
S

S
H

IF
T

_
L

E
F

T
(u

n
,
n
a
)

u
n

S
H

IF
T

_
R

IG
H

T
(u

n
,
n
a
)

u
n

S
H

IF
T

_
L

E
F

T
(s

g
,
n
a
)

s
g

S
H

IF
T

_
R

IG
H

T
(s

g
,
n
a
)

s
g

R
O

T
A

T
E

_
L

E
F

T
(u

n
,
n
a
)

u
n

R
O

T
A

T
E

_
R

IG
H

T
(u

n
,
n
a
)

u
n

R
O

T
A

T
E

_
L

E
F

T
(s

g
,
n
a
)

s
g

R
O

T
A

T
E

_
R

IG
H

T
(s

g
,
n
a
)

s
g

R
E

S
IZ

E
(s

g
,
n
a
)

s
g

R
E

S
IZ

E
(u

n
,
n
a
)

u
n

2
.4

.
C

O
N

V
E

R
S

IO
N

 F
U

N
C

T
IO

N
S

F
ro

m
T

o
F

u
n
ct

io
n

u
n
,lv

s
g

S
IG

N
E

D
(f

ro
m

)
sg

,lv
u
n

U
N

S
IG

N
E

D
(f

ro
m

)
u
n
,s

g
lv

S
T

D
_
L

O
G

IC
_
V

E
C

T
O

R
(f

ro
m

)
u
n
,s

g
in

T
O

_
IN

T
E

G
E

R
(f

ro
m

)
n
a

u
n

T
O

_
U

N
S

IG
N

E
D

(f
ro

m
)

in
s
g

T
O

_
S

IG
N

E
D

(f
ro

m
)

3
.

IE
E

E
’S

 N
U

M
E

R
IC

_
B

IT

3
.1

.
P

R
E

D
E

F
IN

E
D

 T
Y

P
E

S

U
N

S
IG

N
E

D
(n

a
 t

o
 |
 d

o
w

n
to

 n
a
)

A
rr

a
y

o
f
B

IT
S

IG
N

E
D

(n
a
 t

o
 |
 d

o
w

n
to

 n
a
)

A
rr

a
y

o
f
B

IT

3
.2

.
O

V
E

R
L

O
A

D
E

D
 O

P
E

R
A

T
O

R
S

L
e
ft

O
p

R

ig
h
t
 R

e
tu

rn
a
b

s
s
g

s
g

-
s
g

s
g

u
n

+
,-

,*
,/
,r

e
m

,m
o

d

u
n

u
n

s
g

+
,-

,*
,/
,r

e
m

,m
o

d

s
g

s
g

u
n

+
,-

,*
,/
,r

e
m

,m
o

d
 c

n
a

u
n

s
g

+
,-

,*
,/
,r

e
m

,m
o

d
 c

in
s
g

u
n

<
,>

,<
=

,>
=

,=
,/
=

u
n

b
o
o
l

s
g

<
,>

,<
=

,>
=

,=
,/
=

s
g

b
o
o
l

u
n

<
,>

,<
=

,>
=

,=
,/
=

 c
n
a

b
o
o
l

s
g

<
,>

,<
=

,>
=

,=
,/
=

 c
in

b
o
o
l

3
.3

.
P

R
E

D
E

F
IN

E
D

 F
U

N
C

T
IO

N
S

S
H

IF
T

_
L

E
F

T
(u

n
,
n
a
)

u
n

S
H

IF
T

_
R

IG
H

T
(u

n
,
n
a
)

u
n

S
H

IF
T

_
L

E
F

T
(s

g
,
n
a
)

s
g

S
H

IF
T

_
R

IG
H

T
(s

g
,
n
a
)

s
g

R
O

T
A

T
E

_
L

E
F

T
(u

n
,
n
a
)

u
n

R
O

T
A

T
E

_
R

IG
H

T
(u

n
,
n
a
)

u
n

R
O

T
A

T
E

_
L

E
F

T
(s

g
,
n
a
)

s
g

R
O

T
A

T
E

_
R

IG
H

T
(s

g
,
n
a
)

s
g

R
E

S
IZ

E
(s

g
,
n
a
)

s
g

R
E

S
IZ

E
(u

n
,
n
a
)

u
n

3
.4

.
C

O
N

V
E

R
S

IO
N

 F
U

N
C

T
IO

N
S

F
ro

m
T

o
F

u
n
ct

io
n

u
n
,b

v
s
g

S
IG

N
E

D
(f

ro
m

)
sg

,b
v

u
n

U
N

S
IG

N
E

D
(f

ro
m

)
u
n
,s

g
bv

B
IT

_
V

E
C

T
O

R
(f

ro
m

)
u
n
,s

g
in

T
O

_
IN

T
E

G
E

R
(f

ro
m

)
n
a

u
n

T
O

_
U

N
S

IG
N

E
D

(f
ro

m
)

in
s
g

T
O

_
S

IG
N

E
D

(f
ro

m
)

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n
.
 P

e
rm

is
si

o
n
 t
o

re
p
ro

d
u
ce

 a
n
d
 d

is
tr

ib
u
te

 s
tr

ic
tly

 v
e
rb

a
tim

 c
o
p
ie

s
o
f
th

is
d
o
cu

m
e
n
t
in

 w
h
o
le

 is
 h

e
re

b
y

g
ra

n
te

d
.

S
e
e
 r

e
ve

rs
e
 s

id
e
 f
o
r

a
d
d
iti

o
n
a
l i

n
fo

rm
a
tio

n
.

4
.

S
Y

N
O

P
S

Y
S
’

S
T

D
_

L
O

G
IC

_
A

R
IT

H

4
.1

.
P

R
E

D
E

F
IN

E
D

 T
Y

P
E

S

U
N

S
IG

N
E

D
(n

a
 t

o
 |
 d

o
w

n
to

 n
a
)

S
IG

N
E

D
(n

a
 t

o
 |
 d

o
w

n
to

 n
a
) A
rr

a
ys

 o
f
S

T
D

_
L
O

G
IC

S
M

A
L

L
_
IN

T
In

te
g
e
r,

 0
 o

r
1

4
.2

.
O

V
E

R
L

O
A

D
E

D
 O

P
E

R
A

T
O

R
S

L
e
ft

O
p

R

ig
h
t
 R

e
tu

rn
a
b

s
s
g

sg
,lv

+
u
n

u
n
,lv

+
,-

s
g

sg
,lv

u
n

+
,-

,*
,/

u
n

u
n
,lv

s
g

+
,-

,*
,/

s
g

sg
,lv

s
g

+
,-

,*
,/

 c
u
n

sg
,lv

u
n

+
,-

 c
in

u
n
,lv

s
g

+
,-

 c
in

sg
,lv

u
n

+
,-

 c
u
/l

u
n
,lv

s
g

+
,-

 c
u
/l

sg
,lv

u
n

<
,>

,<
=

,>
=

,=
,/
=

u
n

b
o
o
l

s
g

<
,>

,<
=

,>
=

,=
,/
=

s
g

b
o
o
l

u
n

<
,>

,<
=

,>
=

,=
,/
=

 c
in

b
o
o
l

s
g

<
,>

,<
=

,>
=

,=
,/
=

 c
in

b
o
o
l

4
.3

.
P

R
E

D
E

F
IN

E
D

 F
U

N
C

T
IO

N
S

S
H

L
(u

n
,
u
n
)

u
n

S
H

R
(u

n
,
u
n
)

u
n

S
H

L
(s

g
,
u
n
)

s
g

S
H

R
(s

g
,
u
n
)

s
g

E
X

T
(lv

,
in

)
lv

ze
ro

-e
xt

e
n
d

S
E

X
T

(lv
,
in

)
lv

si
g
n
-e

xt
e
n

4
.4

.
C

O
N

V
E

R
S

IO
N

 F
U

N
C

T
IO

N
S

F
ro

m
T

o
F

u
n
ct

io
n

u
n
,lv

s
g

S
IG

N
E

D
(f

ro
m

)
sg

,lv
u
n

U
N

S
IG

N
E

D
(f

ro
m

)
sg

,u
n

lv
S

T
D

_
L

O
G

IC
_
V

E
C

T
O

R
(f

ro
m

)
u
n
,s

g
in

C
O

N
V

_
IN

T
E

G
E

R
(f

ro
m

)
in

,u
n
,s

g
,u

u
n

C
O

N
V

_
U

N
S

IG
N

E
D

(f
ro

m
,
si

ze
)

in
,u

n
,s

g
,u

s
g

C
O

N
V

_
S

IG
N

E
D

(f
ro

m
,
si

ze
)

in
,u

n
,s

g
,u

lv
C

O
N

V
_
S

T
D

_
L

O
G

IC
_
V

E
C

T
O

R
(f

ro
m

,
si

ze
)

5
.

S
Y

N
O

P
S

Y
S
’

S
T

D
_

L
O

G
IC

_
M

IS
C

5
.1

.
P

R
E

D
E

F
IN

E
D

 F
U

N
C

T
IO

N
S

A
N

D
_
R

E
D

U
C

E
(l
v

| u
v)

u
/l

O
R

_
R

E
D

U
C

E
(l
v

| u
v)

u
/l

X
O

R
_
R

E
D

U
C

E
(l
v

| u
v)

u
/l

6
.

S
Y

N
O

P
S

Y
S
’

S
T

D
_

L
O

G
IC

_
U

N
S

IG
N

E
D

6
.1

.
O

V
E

R
L

O
A

D
E

D
 O

P
E

R
A

T
O

R
S

L
e
ft

O
p

R

ig
h
t
 R

e
tu

rn
+

lv
lv

lv
+

,-
,*

lv
lv

lv
+

,-
c

in
lv

lv
+

,-
 c

u
/l

lv
lv

<
,>

,<
=

,>
=

,=
,/
=

lv

b
o
o
l

lv
<

,>
,<

=
,>

=
,=

,/
=

 c
in

b
o
o
l

6
.2

.
C

O
N

V
E

R
S

IO
N

 F
U

N
C

T
IO

N
S

F
ro

m
T

o
F

u
n
ct

io
n

lv
in

C
O

N
V

_
IN

T
E

G
E

R
(f

ro
m

)

7
.

S
Y

N
O

P
S

Y
S
’

S
T

D
_

L
O

G
IC

_
S

IG
N

E
D

7
.1

.
O

V
E

R
L

O
A

D
E

D
 O

P
E

R
A

T
O

R
S

L
e
ft

O
p

R

ig
h
t
 R

e
tu

rn
a
b

s
lv

lv
+

,-
lv

lv
lv

+
,-

,*
lv

lv
lv

+
,-

c

in
lv

lv
+

,-
 c

u
/l

lv
lv

<
,>

,<
=

,>
=

,=
,/
=

lv

b
o
o
l

lv
<

,>
,<

=
,>

=
,=

,/
=

 c
in

b
o
o
l

7
.2

.
C

O
N

V
E

R
S

IO
N

 F
U

N
C

T
IO

N
S

F
ro

m
T

o
F

u
n
ct

io
n

lv
in

C
O

N
V

_
IN

T
E

G
E

R
(f

ro
m

)

8
.

S
Y

N
O

P
S

Y
S
’

S
T

D
_

L
O

G
IC

_
T

E
X

T
IO

R
e
a
d
/w

ri
te

 b
in

a
ry

 v
a
lu

e
s

R
E

A
D

(l
in

e
,
u
/l,

 [
g
o
o
d
])

;
R

E
A

D
(l
in

e
,
u
v,

 [
g
o
o
d
])

;
R

E
A

D
(l
in

e
,
lv

,
[g

o
o
d
])

;
W

R
IT

E
(l
in

e
,
u
/l,

 [
ju

st
ify

],
 [
w

id
th

])
;

W
R

IT
E

(l
in

e
,
u
v,

 [
ju

st
ify

],
 [
w

id
th

])
;

W
R

IT
E

(l
in

e
,
lv

,
[ju

st
ify

],
 [
w

id
th

])
;

R
e
a
d
/w

ri
te

 o
ct

a
l v

a
lu

e
s

O
R

E
A

D
(l
in

e
,
u
v,

 [
g
o
o
d
])

;
O

R
E

A
D

(l
in

e
,
lv

,
[g

o
o
d
])

;
O

W
R

IT
E

(l
in

e
,
u
v,

 [
ju

st
ify

],
 [
w

id
th

])
;

O
W

R
IT

E
(l
in

e
,
lv

,
[ju

st
ify

],
 [
w

id
th

])
;

R
e
a
d
/w

ri
te

 h
e
xa

d
e
ci

m
a
l v

a
lu

e
s

H
R

E
A

D
(l
in

e
,
u
v,

 [
g
o
o
d
])

;
H

R
E

A
D

(l
in

e
,
lv

,
[g

o
o
d
])

;
H

W
R

IT
E

(l
in

e
,
u
v,

 [
ju

st
ify

],
 [
w

id
th

])
;

H
W

R
IT

E
(l
in

e
,
lv

,
[ju

st
ify

],
 [
w

id
th

])
;

9
.

C
A

D
E

N
C

E
’S

 S
T

D
_

L
O

G
IC

_
A

R
IT

H

9
.1

.
O

V
E

R
L

O
A

D
E

D
 O

P
E

R
A

T
O

R
S

L
e
ft

O
p

R

ig
h
t
 R

e
tu

rn
+

uv
u
v

+
lv

lv
u
/l

+
,-

,*
,/

u
/l

u
/l

lv
+

,-
,*

,/
lv

lv
lv

+
,-

,*
,/

c
u
/l

lv
lv

+
,-

c

in
lv

uv
+

,-
,*

uv
u
v

uv
+

,-
,*

c
u
/l

u
v

uv
+

,-
c

in
u
v

lv
<

,>
,<

=
,>

=
,=

,/
=

 c
in

b
o
o
l

uv
<

,>
,<

=
,>

=
,=

,/
=

 c
in

b
o
o
l

9
.2

.
P

R
E

D
E

F
IN

E
D

 F
U

N
C

T
IO

N
S

C
-l
ik

e
 ?

:
re

p
la

ce
m

e
n
ts

:
C

O
N

D
_
O

P
(b

o
o
l,

lv
,
lv

)
lv

C
O

N
D

_
O

P
(b

o
o
l,

u
v
,
u
v
)

u
v

C
O

N
D

(b
o
o
l,

u
/l,

 u
/l)

u
/l

S
h
ift

 o
p
e
ra

tio
n
s:

S
H

_
L

E
F

T
(l
v
,
n
a
)

lv
S

H
_
L

E
F

T
(u

v
,
n
a
)

u
v

S
H

_
R

IG
H

T
(l
v
,
n
a
)

lv
S

H
_
R

IG
H

T
(u

v
,
n
a
)

uv

R
e
si

ze
 f
u
n
ct

io
n
s:

A
L

IG
N

_
S

IZ
E

(l
v
,
n
a
)

lv
A

L
IG

N
_
S

IZ
E

(u
v
,
n
a
)

u
v

A
L

IG
N

_
S

IZ
E

(u
/l,

 n
a
)

lv
A

L
IG

N
_
S

IZ
E

(u
/l,

 n
a
)

u
v

9
.3

.
C

O
N

V
E

R
S

IO
N

 F
U

N
C

T
IO

N
S

F
ro

m
T

o
F

u
n
ct

io
n

lv
,u

v,
u
/l

in
T

O
_

IN
T

E
G

E
R

(f
ro

m
)

in
lv

T
O

_
S

T
D

L
O

G
IC

V
E

C
T

O
R

(f
ro

m
,
si

ze
)

in
uv

T
O

_
S

T
D

U
L

O
G

IC
V

E
C

T
O

R
(f

ro
m

,
si

ze
)

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n

©
 1

9
9
5
 Q

u
a
lis

 D
e
si

g
n
 C

o
rp

o
ra

tio
n
.
 P

e
rm

is
si

o
n
 t
o

re
p
ro

d
u
ce

 a
n
d
 d

is
tr

ib
u
te

 s
tr

ic
tly

 v
e
rb

a
tim

 c
o
p
ie

s
o
f
th

is
d
o
cu

m
e
n
t
in

 w
h
o
le

 is
 h

e
re

b
y

g
ra

n
te

d
.

Q
u

a
li
s
 D

e
s
ig

n
 C

o
rp

o
ra

ti
o

n
B

e
a
ve

rt
o
n
,
O

R
 U

S
A

P
h
o
n
e
:
+

1
-5

0
3
-5

3
1
-0

3
7
7

 F

A
X

:
+

1
-5

0
3
-6

2
9
-5

5
2
5

E
-m

a
il:

 in
fo

@
q
u
a
lis

.c
o
m

A
ls

o
 a

v
a
il
a
b

le
:

V

H
D

L
 Q

u
ic

k
R

e
fe

re
n
ce

 C
a
rd

V
e
ri
lo

g
 H

D
L
 Q

u
ic

k
R

e
fe

re
n
ce

 C
a
rd

D
Contributors to This Book

Bryan Mealy is an associate professor at the California Polytechnic State

University, San Luis Obispo, USA. His technical interests include designing

new courses, embedded systems and digital hardware. His real interests

are developing his luthier skills and making noise on bass guitar and piano.

Fabrizio Tappero is an embedded system developer with experience in

academic research on satellite-based navigation systems and GNSS re-

ceiver design. Among other things, he enjoys very much coding in VHDL

and Python.

Christina Jarron is an Aussie technical writer and editor. When she

is not busy running after her customers, she spends her time wandering

around the beautiful city of Barcelona.

Rob Ash lives on the South Coast of the UK. Originally a sign painter he

now spends his time completing art, design and illustration work. When

not at his easel or digital tablet he enjoys photography, music and playing

bass guitar.

	Acknowledgments
	Purpose of this book
	Introduction To VHDL
	Golden Rules of VHDL
	Tools Needed for VHDL Development

	VHDL Invariants
	Case Sensitivity
	White Space
	Comments
	Parentheses
	VHDL Statements
	if, case and loop Statements
	Identifiers
	Reserved Words
	VHDL Coding Style

	VHDL Design Units
	Entity
	VHDL Standard Libraries
	Architecture
	Signal and Variable Assignments
	Summary
	Exercises

	VHDL Programming Paradigm
	Concurrent Statements
	Signal Assignment Operator ``<=''
	Concurrent Signal Assignment Statements
	Conditional Signal Assignment when
	Selected Signal Assignment with select
	Process Statement
	Summary
	Exercises

	Standard Models in VHDL Architectures
	Data-flow Style Architecture
	Behavioral Style Architecture
	Process Statement
	Sequential Statements
	Signal Assignment Statement
	if Statement
	case Statement

	Caveats Regarding Sequential Statements
	Summary
	Exercises: Behavioral Modeling

	VHDL Operators
	Logical Operators
	Relational Operators
	Shift Operator
	Other Operators
	Concatenation Operator
	Modulus and Remainder Operators
	Review of Almost Everything Up to Now
	Using VHDL for Sequential Circuits
	Simple Storage Elements Using VHDL
	Inducing Memory: Data-flow vs. Behavioral Modeling
	Important Points
	Exercises: Basic Memory Elements

	Finite State Machine Design Using VHDL
	VHDL Behavioral Representation of FSMs
	One-Hot Encoding for FSMs
	Important Points
	Exercises: Behavioral Modeling of FSMs

	Structural Modeling In VHDL
	VHDL Modularity with Components
	Generic Map
	Important Points
	Exercises: Structural Modeling

	Registers and Register Transfer Level
	Important Points
	Exercises: Register Transfer Level Circuits

	Data Objects
	Types of Data Objects
	Data Object Declarations
	Variables and Assignment Operator ``:=''
	Signals vs. Variables
	Standard Data Types
	User-Defined Types
	Commonly Used Types
	Integer Types
	signed and unsigned Types
	std_logic Types
	Important Points

	Looping Constructs
	for and while Loops
	for Loops
	while Loops
	Loop Control: next and exit Statements

	Standard Digital Circuits in VHDL
	RET D Flip-flop - Behavioral Model
	FET D Flip-flop with Active-low Asynchronous Preset - Behavioral Model
	8-Bit Register with Load Enable - Behavioral Model
	Synchronous Up/Down Counter - Behavioral Model
	Shift Register with Synchronous Parallel Load - Behavioral Model
	8-Bit Comparator - Behavioral Model
	BCD to 7-Segment Decoder - Data-Flow Model
	4:1 Multiplexer - Behavioral Model
	4:1 Multiplexer - Data-Flow Model
	Decoder

	Appendix VHDL Reserved Words
	Appendix Standard VHDL Packages
	IEEE Standard Libraries
	Non-standard Libraries

	Appendix VHDL Reference Cards
	Appendix Contributors to This Book

